
Chemistry, Books a la Carte Edition and Modified Mastering Chemistry with Pearson eText & ValuePack Access Card (7th Edition)
7th Edition
ISBN: 9780134172514
Author: John E. McMurry
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.52SP
Interpretation Introduction
Interpretation:
The difference between internal energy change and enthalpy change and which one is measured at constant pressure and which one at constant volume should be identified.
Concept introduction:
System exchanges energy with its surroundings by two methods: Either by transferring heat or by performing work.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(3 pts) Silver metal adopts a fcc unit cell structure and has an atomic radius of 144 pm. Fromthis information, calculate the density of silver. Show all work.
4. (3 pts) From the information below, determine the lattice enthalpy for MgBr2. Show all
work.
AH/(kJ mol-¹)
Sublimation of Mg(s)
+148
lonization of Mg(g)
+2187 to Mg2+(g)
Vaporization of Br₂(1)
+31
Dissociation of Br,(g)
+193
Electron gain by Br(g)
-331
Formation of MgBr₂(s)
-524
1. (4 pts-2 pts each part) Consider the crystal structures of NaCl, ZnS, and CsCl (not
necessarily shown in this order).
a. For one of the three compounds, justify that the unit cell is consistent with stoichiometry
of the compound.
b. In each of the crystal structures, the cations reside in certain holes in the anions' packing
structures. For each compound, what type of holes are occupied by the cations and
explain why those particular types of holes are preferred.
Chapter 9 Solutions
Chemistry, Books a la Carte Edition and Modified Mastering Chemistry with Pearson eText & ValuePack Access Card (7th Edition)
Ch. 9 - Prob. 9.1PCh. 9 - Conceptual APPLY 9.2 How much work is done in...Ch. 9 - PRACTICE 9.3 The reaction between hydrogen and...Ch. 9 - Conceptual APPLY 9.4 The following reaction has E...Ch. 9 - PRACTICE 9.5 Use the following t her mo chemical...Ch. 9 - APPLY 9.6 Approximately, 1.8106 kJ of energy is...Ch. 9 - PRACTICE 9.7 Indicate the direction of heat...Ch. 9 - APPLY 9.8 Instant hot packs and cold packs contain...Ch. 9 - PRACTICE 9.9 What is the specific heat of lead in...Ch. 9 - APPLY 9.10 Calculate the heat capacity (C) of a...
Ch. 9 - PRACTICE 9.11 When 25.0 mL of 1.0 M H2SO4 is added...Ch. 9 - Prob. 9.12ACh. 9 - Prob. 9.13PCh. 9 - Prob. 9.14ACh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16ACh. 9 - Prob. 9.17PCh. 9 - APPLY 9.18 Benzene (C6H6) has two resonance...Ch. 9 - Prob. 9.19PCh. 9 - Prob. 9.20ACh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22ACh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24ACh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - A piece of dry ice (solid CO2) is placed inside a...Ch. 9 - Imagine a reaction that results in a change in...Ch. 9 - 9.32 Redraw the following diagram to represent the...Ch. 9 - 9.33 A reaction is carried out in a cylinder...Ch. 9 - Prob. 9.34CPCh. 9 - Prob. 9.35CPCh. 9 - Prob. 9.36CPCh. 9 - Prob. 9.37CPCh. 9 - Prob. 9.38CPCh. 9 - Prob. 9.39CPCh. 9 - What is the difference between heat and...Ch. 9 - What is internal energy?Ch. 9 - Prob. 9.42SPCh. 9 - Prob. 9.43SPCh. 9 - Which of the following are state functions, and...Ch. 9 - Prob. 9.45SPCh. 9 - Calculate the work done in joules by a chemical...Ch. 9 - The addition of H2 to C=C double bonds is an...Ch. 9 - Prob. 9.48SPCh. 9 - Prob. 9.49SPCh. 9 - 9.50 A reaction inside a cylindrical container...Ch. 9 - At a constant pressure of 0.905 atm, a chemical...Ch. 9 - Prob. 9.52SPCh. 9 - Prob. 9.53SPCh. 9 - Prob. 9.54SPCh. 9 - Prob. 9.55SPCh. 9 - 9.56 The explosion of 2.00 mol of solid...Ch. 9 - Prob. 9.57SPCh. 9 - Prob. 9.58SPCh. 9 - Assume that a particular reaction evolves 244 kJ...Ch. 9 - Prob. 9.60SPCh. 9 - A reaction takes place at a constant pressure of...Ch. 9 - Prob. 9.62SPCh. 9 - Indicate the direction of heat transfer between...Ch. 9 - Prob. 9.64SPCh. 9 - Prob. 9.65SPCh. 9 - Aluminum metal reacts with chlorine with a...Ch. 9 - Prob. 9.67SPCh. 9 - 9,68 How much heat in kilojoules is evolved or...Ch. 9 - 9.69 Nitromethane (CH3NO2), sometimes used as a...Ch. 9 - How much heat in kilojoules is evolved or absorbed...Ch. 9 - How much heat in kilojoules is evolved or absorbed...Ch. 9 - What is the difference between heat capacity and...Ch. 9 - Does a measurement carried out in a bomb...Ch. 9 - Sodium metal is sometimes used as a cooling agent...Ch. 9 - Titanium metal is used as a structural material in...Ch. 9 - Assuming that Coca Cola has the same specific heat...Ch. 9 - Calculate the amount of heat required to raise the...Ch. 9 - Instant cold packs used to treat athletic injuries...Ch. 9 - 9.79 Instant hot packs contain a solid and a pouch...Ch. 9 - Prob. 9.80SPCh. 9 - Prob. 9.81SPCh. 9 - 9.82 When 0.187 g of benzene, C6H6 is burned in a...Ch. 9 - Prob. 9.83SPCh. 9 - 9.84 How is the standard state of an element...Ch. 9 - Prob. 9.85SPCh. 9 - Prob. 9.86SPCh. 9 - Prob. 9.87SPCh. 9 - Prob. 9.88SPCh. 9 - Prob. 9.89SPCh. 9 - Prob. 9.90SPCh. 9 - Prob. 9.91SPCh. 9 - Write balanced equations for the formation of the...Ch. 9 - Prob. 9.93SPCh. 9 - Prob. 9.94SPCh. 9 - Prob. 9.95SPCh. 9 - Prob. 9.96SPCh. 9 - Prob. 9.97SPCh. 9 - Prob. 9.98SPCh. 9 - Prob. 9.99SPCh. 9 - Prob. 9.100SPCh. 9 - Prob. 9.101SPCh. 9 - Prob. 9.102SPCh. 9 - Prob. 9.103SPCh. 9 - Prob. 9.104SPCh. 9 - Prob. 9.105SPCh. 9 - Prob. 9.106SPCh. 9 - Prob. 9.107SPCh. 9 - Use the average bond dissociation energies in...Ch. 9 - 9.109 Use the bond dissociation energies in Table...Ch. 9 - Prob. 9.110SPCh. 9 - Calculate an approximate heat of combustion for...Ch. 9 - Prob. 9.112SPCh. 9 - Prob. 9.113SPCh. 9 - Prob. 9.114SPCh. 9 - Prob. 9.115SPCh. 9 - Prob. 9.116SPCh. 9 - Prob. 9.117SPCh. 9 - Prob. 9.118SPCh. 9 - Prob. 9.119SPCh. 9 - One of the steps in the cracking of petroleum into...Ch. 9 - The commercial production of 1,2-dichloro ethane,...Ch. 9 - Prob. 9.122SPCh. 9 - Prob. 9.123SPCh. 9 - Suppose that a reaction has H = -33 kJ and S = -58...Ch. 9 - Suppose that a reaction has H = +41 kJ and S =...Ch. 9 - Prob. 9.126SPCh. 9 - Vinyl chloride (H2C=CHCl), the starting material...Ch. 9 - Ethyl alcohol has Hfusion = 5.02 kJ/mol and melts...Ch. 9 - Chloroform has Hvaporization = 29.2 kJ/mol and...Ch. 9 - When a sample of a hydrocarbon fuel is ignited and...Ch. 9 - Used in welding metals, the reaction of acetylene...Ch. 9 - Ethyl chloride (C2H5Cl), a substance used as a...Ch. 9 - When 1.50 g of magnesium metal is allowed to react...Ch. 9 - Prob. 9.134CPCh. 9 - Find H in kilojoules for the reaction of nitric...Ch. 9 - The boiling point of a substance is defined as the...Ch. 9 - Prob. 9.137CPCh. 9 - Prob. 9.138CPCh. 9 - Prob. 9.139CPCh. 9 - Isooctane, C8H18, is the component of gasoline...Ch. 9 - We said in Section 9.1 that the potential energy...Ch. 9 - For a process to be spontaneous, the total entropy...Ch. 9 - Set up a Hess's law cycle, and use the following...Ch. 9 - A 110.0 g piece of molybdenum metal is heated to...Ch. 9 - Given 400.0 g of hot tea at 80.0 °C, what mass of...Ch. 9 - Citric acid has three dissociable hydrogens. When...Ch. 9 - Assume that 100.0 mL of 0.200 M CsOH and 50.0 mL...Ch. 9 - Imagine that you dissolve 10.0 g of a mixture of...Ch. 9 - Consider the reaction: 4CO(g)+2NO2(g)4CO2(g)+N2(g)...Ch. 9 - The reaction S8(g)4S2(g) has H = +237 kJ (a) The...Ch. 9 - Prob. 9.151MPCh. 9 - Prob. 9.152MPCh. 9 - (a) Write a balanced equation for the reaction of...Ch. 9 - Prob. 9.154MPCh. 9 - Prob. 9.155MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- (2 pts) What do you expect to happen in a Na2O crystal if a Cl− ion replaces one of the O2−ions in the lattice?arrow_forward(2 pts) WSe2 is an ionic compound semiconductor that can be made to be p-type or n-type.What must happen to the chemical composition for it to be p-type? What must happen tothe chemical composition for it to be n-type?arrow_forward8. (2 pts) Silicon semiconductors have a bandgap of 1.11 eV. What is the longest photon wavelength that can promote an electron from the valence band to the conduction band in a silicon-based photovoltaic solar cell? Show all work. E = hv = hc/λ h = 6.626 x 10-34 Js c = 3.00 x 108 m/s 1 eV 1.602 x 10-19 Jarrow_forward
- A solution containing 100.0 mL of 0.155 M EDTA buffered to pH 10.00 was titrated with 100.0 mL of 0.0152 M Hg(ClO4)2 in a cell: calomel electrode (saturated)//titration solution/Hg(l) Given the formation constant of Hg(EDTA)2-, logKf= 21.5, and alphaY4-=0.30, find out the cell voltage E. Hg2+(aq) + 2e- = Hg(l) E0= 0.852 V E' (calomel electrode, saturated KCl) = 0.241 Varrow_forwardFrom the following reduction potentials I2 (s) + 2e- = 2I- (aq) E0= 0.535 V I2 (aq) + 2e- = 2I- (aq) E0= 0.620 V I3- (aq) + 2e- = 3I- (aq) E0= 0.535 V a) Calculate the equilibrium constant for I2 (aq) + I- (aq) = I3- (aq). b) Calculate the equilibrium constant for I2 (s) + I- (aq) = I3- (aq). c) Calculate the solubility of I2 (s) in water.arrow_forward2. (3 pts) Consider the unit cell for the spinel compound, CrFe204. How many total particles are in the unit cell? Also, show how the number of particles and their positions are consistent with the CrFe204 stoichiometry - this may or may not be reflected by the particle colors in the diagram. (HINT: In the diagram, the blue particle is in an interior position while each red particle is either in a corner or face position.)arrow_forward
- From the following potentials, calculate the activity of Cl- in saturated KCl. E0 (calomel electrode)= 0.268 V E (calomel electrode, saturated KCl)= 0.241 Varrow_forwardCalculate the voltage of each of the following cells. a) Fe(s)/Fe2+ (1.55 x 10-2 M)//Cu2+ (6.55 x 10-3 M)/Cu(s) b) Pt, H2 (0.255 bar)/HCl (4.55 x 10-4 M), AgCl (sat'd)/Ag Fe2+ +2e- = Fe E0= -0.44 V Cu2+ + 2e- = Cu E0= 0.337 V Ag+ + e- = Ag E0= 0.799 V AgCl(s) + e- = Ag(s) + Cl- E0= 0.222 V 2H+ + 2e- = H2 E0= 0.000 Varrow_forwardA solution contains 0.097 M Ce3+, 1.55x10-3 M Ce4+, 1.55x10-3 M Mn2+, 0.097 M MnO4-, and 1.00 M HClO4 (F= 9.649 x 104 C/mol). a) Write a balanced net reaction that can occur between species in this solution. b) Calculate deltaG0 and K for the reaction. c) Calculate E and deltaG for the conditions given. Ce4+ + e- = Ce3+ E0= 1.70 V MnO4- + 8H+ + 5e- = Mn2+ + 4H2O E0= 1.507 Varrow_forward
- 1. Provide a step-by-step mechanism for formation of ALL STEREOISOMERS in the following reaction. Na HCO3 (Sodium bicarbonate, baking soda) is not soluble in CH2Cl2. The powder is a weak base used to neutralize strong acid (pKa < 0) produced by the reaction. Redraw the product to show the configuration(s) that form at C-2 and C-4. Br2 OH CH2Cl2 Na* HCO3 Br HO OH + Na Br +arrow_forward2. Specify the solvent and reagent(s) required to carry out each of the following FGI. If two reagent sets must be used for the FGI, specify the solvent and reagent(s) for each reagent set. If a reaction cannot be carried out with reagents (sets) class, write NP (not possible) in the solvent box for reagent set #1. Use the letter abbreviation for each solvent; use a number abbreviation for reagent(s). Solvents: CH2Cl2 (A); H₂O (B); Reagents: HBr (1); R₂BH (6); H2SO4 (2); CH3OH (C); Br₂ (3); CH3CO₂H (D) NaHCO3 (4); Hg(OAc)2 (5); H₂O2/HO (7); NaBH4 (8) Reagent Set #1 Reagent Set #2 FGI + enant OH Solvent Reagent(s) Solvent Reagent(s)arrow_forwardGermanium (Ge) is a semiconductor with a bandgap of 2.2 eV. How could you dope Ge to make it a p-type semiconductor with a larger bandgap? Group of answer choices It is impossible to dope Ge and have this result in a larger bandgap. Dope the Ge with silicon (Si) Dope the Ge with gallium (Ga) Dope the Ge with phosphorus (P)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY