9.50 When a 13.0-g sample of NaOH(s) dissolves in 400.0 mL of water in a coffee cup calorimeter, the temperature of the water changes from 22.6°C to 30.7C Assuming that the specific heat capacity of the solution is the same as for water, calculate (a) the heat transfer from system to surroundings and (b) Δ H for the reaction NaOH(s) → Na + (aq) + OH − (aq)
9.50 When a 13.0-g sample of NaOH(s) dissolves in 400.0 mL of water in a coffee cup calorimeter, the temperature of the water changes from 22.6°C to 30.7C Assuming that the specific heat capacity of the solution is the same as for water, calculate (a) the heat transfer from system to surroundings and (b) Δ H for the reaction NaOH(s) → Na + (aq) + OH − (aq)
Solution Summary: The author explains that specific heat is the amount of heat per unit mass required to raise the temperature by one degree Celsius.
9.50 When a 13.0-g sample of NaOH(s) dissolves in 400.0 mL of water in a coffee cup calorimeter, the temperature of the water changes from 22.6°C to 30.7C Assuming that the specific heat capacity of the solution is the same as for water, calculate (a) the heat transfer from system to surroundings and (b)
Δ
H
for the reaction
Laser. Indicate the relationship between metastable state and stimulated emission.
The table includes macrostates characterized by 4 energy levels (&) that are
equally spaced but with different degrees of occupation.
a) Calculate the energy of all the macrostates (in joules). See if they all have
the same energy and number of particles.
b) Calculate the macrostate that is most likely to exist. For this macrostate,
show that the population of the levels is consistent with the Boltzmann
distribution.
macrostate 1 macrostate 2 macrostate 3
ε/k (K) Populations
Populations
Populations
300
5
3
4
200
7
9
8
100
15
17
16
0
33
31
32
DATO: k = 1,38×10-23 J K-1
Don't used Ai solution
Chapter 9 Solutions
Bundle: Chemistry for Engineering Students, Loose-Leaf Version, 4th + OWLv2 with MindTap Reader with Student Solutions Manual, 1 term (6 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY