Principles of Foundation Engineering, SI Edition
8th Edition
ISBN: 9781305723351
Author: Braja M. Das
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.4P
A driven closed-ended pile, circular in cross section, is shown in Figure P12.7. Calculate the following.
- a. The ultimate point load using Meyerhof’s procedure.
- b. The ultimate point load using Vesic’s procedure. Take Irr = 50.
- c. An approximate ultimate point load on the basis of parts (a) and (b).
- d. The ultimate frictional resistance Qs. [Use Eqs. (12.42) through (12.44), and take K = 1.4 and δ′ = 0.6ϕ′.]
- e. The allowable load of the pile (use FS = 4).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A driven closed-ended pile, circular in cross section, is shown in Figure P 9.4.Calculate the following.a. The ultimate point load using Meyerhof’s procedure.b. The ultimate point load using Vesic’s procedure. Take Irr = 50.c. An approximate ultimate point load on the basis of parts (a) and (b).d. The ultimate frictional resistance Qs. [Use Eqs. (9.40 (L' ≈ 15 D)) through (9.42), and take K = 1.4 and ẟ' = 0.6 Φ'.]e. The allowable load of the pile (use FS = 4).
114 A driven closed-ended pile, circular in cross section, is
shown in Figure P11.4. Calculate the following:
a. The ultimate point load using Meyerhof's procedure.
b. The ultimate point load using Vesic's procedure. Take
I,, = 50.
e. An approximate ultimate point load on the basis of parts
(a) and (b).
A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load Qp bya. Meyerhof’s methodb. Vesic’s methodc. Coyle and Castello’s methodUse m = 600 in Eq. (9.26).
Chapter 9 Solutions
Principles of Foundation Engineering, SI Edition
Ch. 9 - A 20 m long concrete pile is shown in Figure...Ch. 9 - Refer to the pile shown in Figure P9.1. Estimate...Ch. 9 - Prob. 9.3PCh. 9 - A driven closed-ended pile, circular in cross...Ch. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - A concrete pile 16 in. 16 in. in cross section is...
Ch. 9 - Prob. 9.11PCh. 9 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - A steel pile (H-section; HP 310 125; see Table...Ch. 9 - A concrete pile is 20 m long and has a cross...Ch. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Solve Problem 12.23 using the method of Broms....Ch. 9 - Prob. 9.20PCh. 9 - Solve Problem 12.25 using the modified EN formula....Ch. 9 - Solve Problem 12.25 using the modified Danish...Ch. 9 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 9 - Redo Problem 12.30 assuming that the water table...Ch. 9 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 9 - A concrete pile measuring 16 in. × 16 in. in cross...Ch. 9 - The plan of a group pile is shown in Figure...Ch. 9 - Prob. 9.28PCh. 9 - The section of a 4 × 4 group pile in a layered...Ch. 9 - Prob. 9.30P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Qp by a. Meyerhofs method b. Vesics method c. Coyle and Castellos method Use m = 600 in Eq. (12.28).arrow_forward12.2 A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (12.28). Concrete pile 460 mm X 460 mm Loose sand di = 30° y = 18.6 kN/m3 20 m F Dense sand $2 = 42° y = 18.5 kN/marrow_forwardi need the answer quicklyarrow_forward
- note: please expert answer only the letter d in the problemarrow_forwardnote: please expert answer only the letter e in the problemarrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure 1. Calculate the following. a. The ultimate point load using Meyerhof’s procedure. b. The ultimate point load using Vesic’s procedure. Take Irr = 50.arrow_forward
- A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (9.26). 9.1 Concrete pile 460 mm x 460 mm Loose sand di = 30° y = 18.6 kN/m3 20 m Dense sand d'2 = 42° y = 18.5 kN/m3 Figure P9.1arrow_forwardRefer to the pile shown in Figure P 9.1. Estimate the side resistance Qs bya. Using Eqs. (9.40) through (9.42). Use K = 1.5 and ẟ' = 0.6 Φ'b. Coyle and Castello’s method [Eq. (9.44)]arrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure P9.4. Calculate the following. a. The ultimate point load using Meyerhof's procedure. d. The ultimate frictional resistance Q,. [Use Eqs. (9.40) through (9.42), and take K = 1.4 and 8' = 0.64'.] e. The allowable load of the pile (use FS = 4). Y - 15.7 kN/m = 32 Groundwater table Yu - 18.2 kN/m³ d= 32 Yu - 19.2 kN/m³ = 40 15 m 381 mm Figure P9.4arrow_forward
- 1%9E lI. bartleby.com/solution-answ = bartleby E Q&A Sign in Engineering / Civil Engineering / Prin... / A 20 m long concre... : A 20 m long concrete pile is shown in F... A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m= 600 in Eq. (12.28). Concrete pile 460 mm x 460 mm Loose sand d - 30 y- 18.6 kN/m 20 m Dense sand d2- 42 y- 18.5 kN/m العربية الإنجليزية IIarrow_forwardP-2 A driven closed-ended pile, circular in cross section, is shown in the Figure. Calculate the following: Layer I Groundwater 3 m táble a. The ultimate point load using Meyerhof's procedure. 3 m Layer II b. The ultimate frictional resistance Qs. [Take K = 1.4 and ô'= 0.6º'] c. The allowable load of the pile (use FS = 3 15 m Layer II d. Calculate the (a), (b) and (c) if the layer III was a Clay soil with C,=80 kPa (use ca-method by Terzaghi and FS = 3) %3D Layer I Y = 15.7 kN/m³ 4' = 32° Layer II = 18.2 kN/m3 Ysat = 19.2 kN/m³ Layer III 381 mm Ysat 4' = 32° c' = 0 = 40° c' = 0 c' = 0arrow_forward7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m 9m 2 m 45 cm Y = 18.5kN/m²³ C= 30kN/m² Ysat = 19kN/m³ Cu = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Concrete Slab Calculations 006; Author: Jerry Howard;https://www.youtube.com/watch?v=R19jILyBxio;License: Standard Youtube License