Principles of Foundation Engineering, SI Edition
8th Edition
ISBN: 9781305723351
Author: Braja M. Das
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 9.9P
To determine
Find the maximum allowable load.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A concrete pile 20 m long with a cross section of 400 mm x 400 mm is fully embedded in a saturated clay layer. The clay has the following properties: γsat = 18.5 kN/m3, ϕ= 0 and cu = 70 kPa. Assume that the water table rises to the tip of the pile. Determine the allowable load that the pile can carry (FS=3). Use the α and λ method to estimate the skin resistance.
Please answer 11.9
Please answer 11.7
Chapter 9 Solutions
Principles of Foundation Engineering, SI Edition
Ch. 9 - A 20 m long concrete pile is shown in Figure...Ch. 9 - Refer to the pile shown in Figure P9.1. Estimate...Ch. 9 - Prob. 9.3PCh. 9 - A driven closed-ended pile, circular in cross...Ch. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - A concrete pile 16 in. 16 in. in cross section is...
Ch. 9 - Prob. 9.11PCh. 9 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - A steel pile (H-section; HP 310 125; see Table...Ch. 9 - A concrete pile is 20 m long and has a cross...Ch. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Solve Problem 12.23 using the method of Broms....Ch. 9 - Prob. 9.20PCh. 9 - Solve Problem 12.25 using the modified EN formula....Ch. 9 - Solve Problem 12.25 using the modified Danish...Ch. 9 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 9 - Redo Problem 12.30 assuming that the water table...Ch. 9 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 9 - A concrete pile measuring 16 in. × 16 in. in cross...Ch. 9 - The plan of a group pile is shown in Figure...Ch. 9 - Prob. 9.28PCh. 9 - The section of a 4 × 4 group pile in a layered...Ch. 9 - Prob. 9.30P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 12.10 A concrete pile 15.24 m long having a cross section of 406 mm × 406 mm is fully embedded in a saturated clay layer for which Ysat = 19.02 kN/m³, p = 0, and c₂ = 76.7 kN/m². Determine the allowable load that the pile can carry. (Let FS = 3.) Use the a method Eq. (12.61) and Table 12.11 to estimate the skin friction and Vesic's method for point load estimation.arrow_forwardA concrete pile 50 ft long having a cross section of 15 in. x 15 in. is fully embedded in a saturated clay layer for which γsat = 121 lb/ft3, Φ = 0, and cu = 1600 lb/ft2. Determine the allowable load that the pile can carry. (Let FS = 3.) Use the a method Eq. (9.59) and Table 9.10 to estimate the skin friction and Vesic’s method for point load estimation.arrow_forwardA 450 mm x 450 mm concrete pile 20.0 m long is driven into sand deposits with y = 17 kN/m³ and = 30°. Find the ultimate load i.e. point load Qp by Meyerhoff's method and Janbu method. Meyerhoff's N = 55, Atmospheric pressure = 100 kN/m², Janbu's N = 18.4arrow_forward
- 3. A concrete pile 15.24 m long having a cross section of 406 mm × 406 mm is fully embedded in a saturated clay layer for which Ysat 19.02 kN/m³, Ø = 0, and cu=76.7 kN/m². Determine the allowable load that the pile can carry (Assuming FS-3). Use the a method to estimate the skin friction and Vesic's method for point load estimation.arrow_forwardA 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (9.26). 9.1 Concrete pile 460 mm x 460 mm Loose sand di = 30° y = 18.6 kN/m3 20 m Dense sand d'2 = 42° y = 18.5 kN/m3 Figure P9.1arrow_forward11.22 A concrete pile measuring 0.406 m X 0.406 m in cross section is 18.3 m long. It is fully embedded in a layer of sand. The following is an approximation of the me- chanical cone penetration resistance (q.) and the friction ratio (F) for the sand layer. Estimate the allowable bearing capacity of the pile. Use FS = 4. Depth below ground surface (m) 9. (kN/m²) F, (%) 0-6.1 2803 2.3 6.1-13.7 3747 2.7 13.7-19.8 8055 2.8arrow_forward
- i need the answer quicklyarrow_forward7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m 9m 2 m 45 cm Y = 18.5kN/m²³ C= 30kN/m² Ysat = 19kN/m³ Cu = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forward7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m ▶ 9m 2m 45 cm Y = 18.5kN/m³ = 30kN/m² Ysat = 19kN/m³ C₂ = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forward
- Please answer 11.22arrow_forwardA 30 m long concrete pile is 305 mm times 350 mm in cross section and is fully embedded in a sand deposit. Using Broms' method, calculate the allowable lateral load Q_g (take FS = 2) at the ground level. Assume the pile is flexible and restrained. Let the soil unit weight, gamma = 16 kN/m^3, the soil friction angle, Phi' = 30^degree; and the yield stress of the pile material, F_y = 21 MPa,arrow_forwardA pile of diameter 0.4 m is fully embedded in a clay stratum having 5 layers, each 5 m thick as shown in the figure below. Assume a constant unit weight of soil as 18 kN/m³ for all the layers. Using method (= 0.15 for 25 m embedment length) and neglecting the end bearing component, the ultimate pile capacity (in kN) is G Y=18kN/m³- for all layers 7XXX 5m 5m 5m 5m 5m = 25 m 0.4m, c=40 kPa c=50 kPa c=60 kPa c=70 kPa c=80 kPa S XXXXarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning