Chemistry for Engineering Students
4th Edition
ISBN: 9781337398909
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.3PAE
(a)
Interpretation Introduction
Interpretation:
Energy use pattern in European countries should be identified.
Concept introduction:
Residential field consuming 18.31 quadrillion Btu, commercial field consuming 28.42 quadrillion Btu industrial field consuming 16.44 quadrillion Btu, transportation field consuming 29.82 quadrillion Btu
(b)
Interpretation Introduction
Interpretation:
Energy use pattern developing countries should be identified.
Concept introduction:
Residential field consuming 28.64 quadrillion Btu, commercial field consuming 26.21 quadrillion Btu industrial field consuming 18.14 quadrillion Btu, transportation field consuming 34.21 quadrillion Btu
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 9 Solutions
Chemistry for Engineering Students
Ch. 9 - Explain the economic importance of conversions...Ch. 9 - • define work and beat using the standard sign...Ch. 9 - • define state functions and explain their...Ch. 9 - • state the first law of thermodynamics in words...Ch. 9 - • use calorimetric data to obtain values for E and...Ch. 9 - • define Hfo and write formation reactions for...Ch. 9 - • explain Hess’s law in your own words.Ch. 9 - • calculate H for chemical reactions from...Ch. 9 - Prob. 9.1PAECh. 9 - Prob. 9.2PAE
Ch. 9 - Prob. 9.3PAECh. 9 - Prob. 9.4PAECh. 9 - Prob. 9.5PAECh. 9 - Prob. 9.6PAECh. 9 - Define the term internal energy.Ch. 9 - How fast (in meters per second) must an iron ball...Ch. 9 - What is the kinetic energy of a single molecule of...Ch. 9 - 9.10 The kinetic energy of molecules is often used...Ch. 9 - 9.11 Analyze the units of the quantity...Ch. 9 - 9.12 How many kilojoules are equal to 3.27 L atm...Ch. 9 - Prob. 9.13PAECh. 9 - Prob. 9.14PAECh. 9 - 9.15 Carry out the following conversions of energy...Ch. 9 - 9.16 According to Figure 9.2, the total energy...Ch. 9 - 9.17 If a machine does 4.8103kJ of work after an...Ch. 9 - 9.18 Calculate (a) q when a system does 54J of...Ch. 9 - 9.19 If the algebraic sign of E is negative, in...Ch. 9 - 9.20 State the first law of thermodynamics briefly...Ch. 9 - 9.21 Which type of energy heat or work, is valued...Ch. 9 - 9.12 PV-work occurs when volume changes and...Ch. 9 - 9.23 Which system does not work: (a) E=436J ,...Ch. 9 - 9.29 In which case is heat added to the system:...Ch. 9 - Prob. 9.25PAECh. 9 - 9.26 Gas furnaces have achieved impressive...Ch. 9 - Prob. 9.27PAECh. 9 - 9.28 When an electrical appliance whose power...Ch. 9 - Prob. 9.29PAECh. 9 - 9.30 For the example of shallow water and sandy...Ch. 9 - 9.31 A metal radiator is made from 26.0 kg of...Ch. 9 - 9.32 The material typically used to heat metal...Ch. 9 - 9.33 Copper wires used to transport electrical...Ch. 9 - 9.34 A copper nail and an iron nail of the same...Ch. 9 - 9.35 A piece of titanium metal with a mass of 20.8...Ch. 9 - 9.36 Define the term calibration.Ch. 9 - 9.37 A calorimeter contained 75.0 g of water at...Ch. 9 - 9.38 The energy densities of various types of coal...Ch. 9 - 9.39 How much thermal energy is required to heat...Ch. 9 - Prob. 9.40PAECh. 9 - 9.41 Under what conditions does the enthalpy...Ch. 9 - 9.42 Why is enthalpy generally more useful than...Ch. 9 - Prob. 9.43PAECh. 9 - Prob. 9.44PAECh. 9 - 9.45 What happens to the temperature of a material...Ch. 9 - 9.46 The heat of fusion of pure silicon is 43.4...Ch. 9 - 9.47 If 14.8 kJ of heat is given off when 1.6 g of...Ch. 9 - 9.48 Calculate the energy required to convert 1.70...Ch. 9 - 9.49 Hvap=31.3 kJ/mol for acetone. If 1.40 kg of...Ch. 9 - 9.50 When a 13.0-g sample of NaOH(s) dissolves in...Ch. 9 - Prob. 9.51PAECh. 9 - 9.52 Write the formation reaction for each of the...Ch. 9 - 9.53 Using these reactions, find the standard...Ch. 9 - 9.54 The phase change between graphite and diamond...Ch. 9 - 9.55 Hydrogen gas will react with either acetylene...Ch. 9 - 9.56 Using heats of formation tabulated in...Ch. 9 - 9.57 The heat of combustion of butane is —2877...Ch. 9 - 9.58 For the reaction C2H2(g)+2H2(g)C2H6,H=136 kJ....Ch. 9 - 9.59 For the reaction N2(g)+O2(g)2NO(g),H=180.5kJ...Ch. 9 - 9.60 Nitroglycenne, C3H5(NO3)3( l ), is an...Ch. 9 - 9.61 Silane, SiH4, burns according to the...Ch. 9 - 9.62 Sulfur trioxide can be removed from the...Ch. 9 - 9.63 Reactions of hydrocarhons are often studied...Ch. 9 - Prob. 9.64PAECh. 9 - 9.65 When 0.0157 g of a compound with a heat of...Ch. 9 - Prob. 9.66PAECh. 9 - Prob. 9.67PAECh. 9 - 9.68 What are some features of petroleum that make...Ch. 9 - 9.69 How are the roles of transmission substations...Ch. 9 - 9.70 Residential electric service in the United...Ch. 9 - 9.71 In recent years, the notion of a “smart grid”...Ch. 9 - 9.72 Although it can be a nuisance when a laptop...Ch. 9 - 9.73 Without looking up any numerical data or...Ch. 9 - 9.74 Without looking up any numerical data or...Ch. 9 - 9.75 Explain why each of the following chemical...Ch. 9 - 9.76 Which of the following are state functions?...Ch. 9 - 9.77 When a reaction is exothermic, is the sum of...Ch. 9 - Prob. 9.78PAECh. 9 - Prob. 9.79PAECh. 9 - Prob. 9.80PAECh. 9 - 9.81 A substance has the following properties:...Ch. 9 - 9.82 The specific heat of gold is 0.13 J g-1 K-1...Ch. 9 - 9.83 A student performing a calorimetry experiment...Ch. 9 - 9.84 Some claim it would be more logical to use...Ch. 9 - 9.85 The figure below shows a "self-cooling"...Ch. 9 - 9.86 You make some iced tea by dropping 134 g of...Ch. 9 - 9.87 What will be the final temperature of a...Ch. 9 - Prob. 9.88PAECh. 9 - 9.89 A sample of gas is 80.0% CH4 and 20.0% C2H6...Ch. 9 - 9.90 Many engineering designs must incorporate...Ch. 9 - 9.91 You want to heat the air in your house with...Ch. 9 - Prob. 9.92PAECh. 9 - Prob. 9.93PAECh. 9 - Prob. 9.94PAECh. 9 - 9.95 How much heat is required to convert 250 g of...Ch. 9 - 9.96 Most first aid "cold packs" are based on the...Ch. 9 - 9.97 Suppose that the working fluid inside an...Ch. 9 - 9.98 Hydrogen combines with oxygen in fuel cells...Ch. 9 - 9.99 The chemical reaction...Ch. 9 - 9.100 Two baking sheets are made of different...Ch. 9 - Prob. 9.101PAECh. 9 - 9.102 A runner generates 418 kJ of energy per...Ch. 9 - 9.103 One reason why the energy density of a fuel...Ch. 9 - 9.104 An engineer is using sodium metal as a...Ch. 9 - Prob. 9.105PAECh. 9 - Prob. 9.106PAECh. 9 - Prob. 9.107PAECh. 9 - Prob. 9.108PAECh. 9 - Prob. 9.109PAECh. 9 - Prob. 9.110PAE
Knowledge Booster
Similar questions
- A piece of chocolate cake contains about 400 calories. A nutritional calorie is equal to 1000 calories (thermochemical calories), which is equal to 4.184 kJ. How many 8-in-high steps must a 180-lb man climb to expend the 400 Cal from the piece of cake? See Exercise 28 for the formula for potential energy.arrow_forwardThermal Interactions Part 1: In an insulated container, you mix 200. g of water at 80C with 100. g of water at 20C. After mixing, the temperature of the water is 60C. a How much did the temperature of the hot water change? How much did the temperature of the cold water change? Compare the magnitudes (positive values) of these changes. b During the mixing, how did the heat transfer occur: from hot water to cold, or from cold water to hot? c What quantity of heat was transferred from one sample to the other? d How does the quantity of heat transferred to or from the hot-water sample compare with the quantity of heat transferred to or from the cold-water sample? e Knowing these relative quantities of heat, why is the temperature change of the cold water greater than the magnitude of the temperature change of the hot water. f A sample of hot water is mixed with a sample of cold water that has twice its mass. Predict the temperature change of each of the samples. g You mix two samples of water, and one increases by 20C, while the other drops by 60C. Which of the samples has less mass? How do the masses of the two water samples compare? h A 7-g sample of hot water is mixed with a 3-g sample of cold water. How do the temperature changes of the two water samples compare? Part 2: A sample of water is heated from 10C to 50C. Can you calculate the amount of heat added to the water sample that caused this temperature change? If not, what information do you need to perform this calculation? Part 3: Two samples of water are heated from 20C to 60C. One of the samples requires twice as much heat to bring about this temperature change as the other. How do the masses of the two water samples compare? Explain your reasoning.arrow_forwardWhich of the following processes is endothermic? a. ice melting b. a piece of paper burning c. a bomb exploding d. an organisms metabolism producing a certain amount of heatarrow_forward
- 9.30 For the example of shallow water and sandy beaches, which material has a larger heat capacity or specific heat? How does a hot day at the beach provide evidence for your answer?arrow_forwardIn a bomb calorimeter, the reaction vessel is surrounded by water that must be added for each experiment. Since the amount of water is not constant from experiment to experiment, the mass of water must be measured in each case. The heat capacity of the calorimeter is broken down into two parts: the water and the calorimeter components. If a calorimeter contains 1.00 kg water and has a total heat capacity of 10.84 kJ/C, what is the heat capacity of the calorimeter components?arrow_forwardThe combustion of methane, is an exothermic process. Therefore, the products of this reaction must possess (higher/ lower) total potential energy than do the reactants.arrow_forward
- Hydrogen is an ideal fuel in many respects; for example, the product of its combustion, water, is nonpolluting. The heat given off in burning hydrogen to gaseous water is 5.16 104 Btu per pound. What is this heat energy in joules per gram? (1 Btu = 252 cal; see also Table 1.4.)arrow_forwardxplain why aluminum cans make good storage containers for soft drinks. Styrofoam cups can be used to keep coffee hot and cola cold. How can this be?arrow_forwardThe temperature of the cooling water as it leaves the hot engine of an automobile is 240 F. After it passes through the radiator it has a temperature of 175 F. Calculate the amount of heat transferred from the engine to the surroundings by one gallon of water with a specific heat of 4.184 J/g oC.arrow_forward
- The equation for the fermentation of glucose to alcohol and carbon dioxide is: C6H12O6(aq) 2C2H5OH(aq) + 2CO2(g) The enthalpy change for the reaction is 67 kJ. Is this reaction exothermic or endothermic? Is energy, in the form of heat, absorbed or evolved as the reaction occurs?arrow_forwardDetermine whether the statements given below are true or false. Consider an endothermic process taking place in a beaker at room temperature. (a) Heat flows from the surroundings to the system. (b) The beaker is cold to the touch. (c) The pressure of the system decreases. (d) The value of q for the system is positive.arrow_forwardA rebreathing gas mask contains potassium superoxide, KO2, which reacts with moisture in the breath to give oxygen. 4KO2(s)+2H2O(l)4KOH(s)+3O2(g) Estimate the grams of potassium superoxide required to supply a persons oxygen needs for one hour. Assume a person requires 1.00 102 kcal of energy for this time period. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 1.00 102 kcal of heat, calculate the amount of oxygen consumed and hence the amount of KO2 required. The ff0 for glucose(s) is 1273 kJ/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning