Concept explainers
9.56 Using heats of formation tabulated in Appendix E, calculate the heats of reaction for the following.
(a)
(b)
(c)
(d)
a.
Interpretation:
The heat of reaction from the heat of formation should be calculated.
Concept Introduction:
The heat of formation is the change in enthalpy when one mole of a substance formed at constant condition (temperature and pressure).
The heat of reaction is the change in enthalpy at constant pressure.
Hess’s law: states change in enthalpy of all the changes occurred in the reaction.
Answer to Problem 9.56PAE
Solution: The heat of reaction is
Explanation of Solution
b.
Interpretation:
The heat of reaction from the heat of formation should be calculated.
Concept Introduction:
The heat of formation is the change in enthalpy when one mole of a substance formed at constant condition (temperature and pressure).
The heat of reaction is the change in enthalpy at constant pressure.
Hess’s law: states change in enthalpy of all the changes occurred in the reaction.
Answer to Problem 9.56PAE
Solution: The heat of reaction is
Explanation of Solution
c.
Interpretation:
The heat of reaction from the heat of formation should be calculated.
Concept Introduction:
The heat of formation is the change in enthalpy when one mole of a substance formed at constant condition (temperature and pressure).
The heat of reaction is the change in enthalpy at constant pressure.
Hess’s law: states change in enthalpy of all the changes occurred in the reaction.
Answer to Problem 9.56PAE
Solution: The heat of reaction is
Explanation of Solution
d.
Interpretation:
The heat of reaction from the heat of formation should be calculated.
Concept Introduction:
The heat of formation is the change in enthalpy when one mole of a substance formed at constant condition (temperature and pressure).
The heat of reaction is the change in enthalpy at constant pressure.
Hess’s law: states change in enthalpy of all the changes occurred in the reaction.
Answer to Problem 9.56PAE
Solution: The heat of reaction is
Explanation of Solution
Want to see more full solutions like this?
Chapter 9 Solutions
Chemistry for Engineering Students
- Chlorine dioxide, ClO2, is a reddish yellow gas used in bleaching paper pulp. The average speed of a ClO2 molecule at 25C is 306 m/s. What is the kinetic energy (in joules) of a ClO2 molecule moving at this speed?arrow_forwardWhen lightning strikes, the energy can force atmospheric nitrogen and oxygen to react to make NO: N2(g)+O2(g)2NO(g)H=+181.8kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = +181.8 kJ? (c) What is the enthalpy change when 3.50 g nitrogen is reacted with excess O2(g)?arrow_forwardThe reaction of quicklime, CaO, with water produces slaked lime, Ca(OH)2, which is widely used in the construction industry to make mortar and plaster. The reaction of quicklime and water is highly exothermic: CaO(s)+H2O(l)Ca(OH)2(s)H=350kJmol1 (a) What is the enthalpy of reaction per gram of quicklime that reacts?. (b) How much heat, in kilojoules, is associated with the production of 1 ton of slaked lime?arrow_forward
- Calcium carbide, CaC2, is manufactured by reducing lime with carbon at high temperature. (The carbide is used in turn to make acetylene, an industrially important organic chemical.) Is the reaction endothermic or exothermic?arrow_forwardThe thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forwardAn industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forward
- How much heat is produced by combustion of 125 g of methanol under standard state conditions?arrow_forwardA 0.470-g sample of magnesium reacts with 200 g dilute HCl in a coffee-cup calorimeter to form MgCl2(aq) and H2(g). The temperature increases by 10.9 C as the magnesium reacts. Assume that the mixture has the same specific heat as water and a mass of 200 g. (a) Calculate the enthalpy change for the reaction. Is the process exothermic or endothermic? (b) Write the chemical equation and evaluate H.arrow_forwardWith a platinum catalyst, ammonia will burn in oxygen to give nitric oxide, NO. 4NH3(g)+5O2(g)4NO(g)+6H2O(g);H=906kJ What is the enthalpy change for the following reaction? NO(g)+32H2O(g)NH3(g)+34O2(g)arrow_forward
- A compound is 82.7% carbon and 17.3% hydrogen, and has a molar mass of approximately 60 g/mol. When 1.000 g of this compound burns in excess oxygen, the enthalpy change is 49.53 kJ. (a) What is the empirical formula of this compound? (b) What is the molecular formula of this compound? (c) What is the standard enthalpy of formation of this compound? (d) Two compounds that have this molecular formula appear in Appendix G. Which one was used in this exercise?arrow_forwardWould the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the experimenter used a calorimeter that was a poorer insulator than a coffee cup calorimeter? Explain your answer.arrow_forwardUsing the data in Appendix G, calculate the standard enthalpy change for each of the following reactions: (a) Si(s)+2F2(g)SiF4(g) (b) 2C(s)+2H2(g)+O2(g)CH3CO2H(l) (c) CH4(g)+N2(g)HCN(g)+NH3(g) ; (d) CS2(g)+3Cl2(g)CCl4(g)+S2Cl2(g)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co