(a)
Interpretation:
The substances which act as reducing agent and oxidizing agent in the given
Concept Introduction:
Redox reactions:
It is a type of reaction in which both oxidation and reduction happens simultaneously. One get oxidized and one get reduced.
Example:
Oxidation of Zinc increased by two and Hydrogen reduced by one;
Oxidizing agent:
Oxidizing agent will gain electrons but itself will get reduced in the reaction. Oxygen, Hydrogen peroxide are good oxidizing agent.
Reducing agent:
A compound or an element donates electron in a redox reactions. Reducing agent will get oxidized in a reaction.
Lithium Aluminium Hydride and Sodium borohydride are good reducing agents.
(b)
Interpretation:
The substances which act as reducing agent and oxidizing agent in the given redox reaction has to be identified.
Concept Introduction:
Redox reactions:
Both reduction and oxidation will occur simultaneously in a redox reaction, one will get reduced and the other will get oxidized.
Example
Here Cu is reduced and
Oxidizing agent:
The substance which accepts electrons in a redox reaction is known as oxidizing agent.
Hydrogen peroxide, oxygen are examples of oxidizing agent.
Reducing agent:
The substance which donates electrons in a redox reaction is known as reducing agent.
(c)
Interpretation:
The substances which act as reducing agent and oxidizing agent in the given redox reaction has to be identified.
Concept Introduction:
Redox reactions:
It is a type of reaction in which both oxidation and reduction happens simultaneously. One get oxidized and one get reduced.
Example:
Oxidation of Zinc increased by two and Hydrogen reduced by one;
Oxidizing agent:
Oxidizing agent will gain electrons but itself will get reduced in the reaction
Oxygen, Hydrogen peroxide are good oxidizing agent.
Reducing agent
A compound or an element donates electron in a redox reactions. Reducing agent will get oxidized in a reaction.
Lithium Aluminium Hydride and Sodium borohydride are good reducing agents.
(d)
Interpretation:
The substances which act as reducing agent and oxidizing agent in the given redox reaction has to be identified.
Concept Introduction:
Redox reactions:
Both reduction and oxidation will occur simultaneously in a redox reaction, one will get reduced and the other will get oxidized.
Example:
Here Cu is reduced and
Oxidizing agent:
The substance which accepts electrons in a redox reaction is known as oxidizing agent.
Hydrogen peroxide, oxygen are examples of oxidizing agent.
Reducing agent:
The substance which donates electrons in a redox reaction is known as reducing agent.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- Part C IN H N. Br₂ (2 equiv.) AlBr3 Draw the molecule on the canvas by choosing buttons from the Tools (for bonds and + e (×) H± 12D T EXP. L CONT. דarrow_forward9. OA. Rank the expected boiling points of the compounds shown below from highest to lowest. Place your answer appropriately in the box. Only the answer in the box will be graded. (3) points) OH OH بر بد بدید 2 3arrow_forwardThere is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS). Ca, ppm V, ppm SCa, arb. units SV, arb. units 20.0 10.0 14375.11 14261.02 40.0 10.0 36182.15 17997.10 60.0 10.0 39275.74 12988.01 80.0 10.0 57530.75 14268.54 100.0…arrow_forward
- A mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C. H₂O(g) + C₁₂O(g) = 2 HOCl(g) K = 0.0900 at 25°C с Calculate the equilibrium concentrations of each gas at 25 °C. [H₂O]= [C₁₂O]= [HOCI]= M Σ Marrow_forwardWhat units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?arrow_forwardProvide the structure, circle or draw, of the monomeric unit found in the biological polymeric materials given below. HO OH amylose OH OH 행 3 HO cellulose OH OH OH Ho HOarrow_forward
- OA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forwardDon't used hand raitingarrow_forwardQuizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




