
(a)
Interpretation:
Identify the missing particles by completing the given nuclear reaction.
Concept Introduction:
In a nuclear reaction we have to balance the following two.
- Number of protons
- Mass number
The sum of protons on reactant side should be equal to sum of protons on product side.
Similarly the total mass number on both the side should be equal.

Answer to Problem 9.28P
The complete reaction will be.
Explanation of Solution
The sum of protons on reactant side
The total mass number on reactant side =
Let number of protons in missing species on product side is “x”.
Therefore.
This is
Let mass number of missing species on product side is “y”.
Therefore.
Hence, the complete equation will be.
(b)
Interpretation:
Identify the missing particles by completing the given nuclear reaction.
Concept Introduction:
In a nuclear reaction we have to balance the following two.
- Number of protons
- Mass number
The sum of protons on reactant side should be equal to sum of protons on product side.
Similarly the total mass number on both the side should be equal.

Answer to Problem 9.28P
The complete reaction will be.
Explanation of Solution
The sum of protons on reactant side
The total mass number on reactant side =
Let number of protons in missing species on product side is “x”.
Therefore.
This is atomic number of Xenon hence symbol will be “Xe”.
Let mass number of missing species on product side is “y”.
Therefore.
Hence the complete equation will be.
(c)
Interpretation:
Identify the missing particles by completing the given nuclear reaction.
Concept Introduction:
In a nuclear reaction we have to balance the following two.
- Number of protons
- Mass number
The sum of protons on reactant side should be equal to sum of protons on product side.
Similarly the total mass number on both the side should be equal.

Answer to Problem 9.28P
The complete reaction will be.
Explanation of Solution
The sum of protons on reactant side
The total mass number on reactant side =
Let number of protons in missing species on product side is “x”.
Therefore.
Hence it is not an element.
Let mass number of missing species on product side is “y”.
Therefore.
Hence it should be a neutron.
Hence the complete equation will be.
(d)
Interpretation:
Identify the missing particles by completing the given nuclear reaction.
Concept Introduction:
In a nuclear reaction we have to balance the following two.
- Number of protons
- Mass number
The sum of protons on reactant side should be equal to sum of protons on product side.
Similarly the total mass number on both the side should be equal.
In beta emission one neutron is converted to a proton and one electron.
Hence there is an increase in atomic number while the mass number remains the same.

Answer to Problem 9.28P
The complete reaction will be.
Explanation of Solution
As it is beta elimination here a neutron is converted to proton and electron.
So there is increase in atomic number.
The parent nucleus is Bismuth, on increase its proton number the element formed will have atomic number 84, this is polonium (symbol Po).
Hence the complete reaction will be.
(e)
Interpretation:
Identify the missing particles by completing the given nuclear reaction.
Concept Introduction:
In a nuclear reaction we have to balance the following two.
- Number of protons
- Mass number
The sum of protons on reactant side should be equal to sum of protons on product side.
Similarly the total mass number on both the side should be equal.
In Gamma radiation emission there is no change in the total number of protons on reactant and product side.
Similarly there is no change in mass number on reactant and product side.

Answer to Problem 9.28P
The complete reaction will be.
Explanation of Solution
The gamma radiation has not mass number and no proton.
The sum of protons on reactant side
The total mass number on reactant side =
Let number of protons in missing species on product side is “x”.
Therefore.
Hence the new element will have atomic number 7, it is nitrogen.
Let mass number of missing species on product side is “y”.
Therefore.
Hence the complete equation will be.
Want to see more full solutions like this?
Chapter 9 Solutions
Introduction to General, Organic and Biochemistry
- Predict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forward
- The product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forwardExplain what is the maximum absorbance of in which caffeine absorbs?arrow_forwardExplain reasons as to why the amount of caffeine extracted from both a singular extraction (5ml Mountain Dew) and a multiple extraction (2 x 5.0ml Mountain Dew) were severely high when compared to coca-cola?arrow_forward
- Protecting Groups and Carbonyls 6) The synthesis generates allethrolone that exhibits high insect toxicity but low mammalian toxicity. They are used in pet shampoo, human lice shampoo, and industrial sprays for insects and mosquitos. Propose detailed mechanistic steps to generate the allethrolone label the different types of reagents (Grignard, acid/base protonation, acid/base deprotonation, reduction, oxidation, witting, aldol condensation, Robinson annulation, etc.) III + VI HS HS H+ CH,CH,Li III I II IV CI + P(Ph)3 V ༼ Hint: no strong base added VI S VII IX HO VIII -MgBr HgCl2,HgO HO. isomerization aqeuous solution H,SO, ༽༽༤༽༽ X MeOH Hint: enhances selectivity for reaction at the S X ☑arrow_forwardDraw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forwardExplanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forward
- Show the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forwardSoap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





