Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.23CP
Write a program that will compute stress, strain, and total deformation for an aluminum bar. Use E = 10,000,000 psi. User input is to be cross-sectional area, length, and axial tensile load. An error message is to be displayed if the stress exceeds the proportional limit (35,000 psi).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 3: The inertia matrix can be written in dyadic form which is particularly useful
when inertia information is required in various vector bases. On the next page is a right
rectangular pyramid of total mass m. Note the location of point Q.
(a) Determine the inertia dyadic for the pyramid P, relative to point Q, i.e., 7%, for unit
vectors ₁₁, 2, 3.
Can you solve for v? Also, what is A x u
The external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0
kN, and T = 72 Nm.
The tube's outer diameter is 50 mm and the inner diameter is 45 mm.
Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J
polar moment inertial is 21.1 cm4.
Determine the following.
(1) The critical element(s) of the bar.
(2) Show the state of stress on a stress element for each critical element.
-120 mm-
F
Chapter 9 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 9 - Write the direct stress formula in its three forms...Ch. 9 - A 6-in-diameter concrete test cylinder is loaded...Ch. 9 - Determine the tensile stress in each segment of...Ch. 9 - Calculate the stress developed in the following...Ch. 9 - The following members are subjected to axial...Ch. 9 - Determine the stresses in the two segments of the...Ch. 9 - A bin weighing 8 tons is supported by three steel...Ch. 9 - Diameters of small commercially available steel...Ch. 9 - A No. 32 (metric designation) reinforcing bar for...Ch. 9 - In the bolted connection of Figure 9.12 , assume...
Ch. 9 - Compute the force required to punch a...Ch. 9 - The 34 — in. — diameter bolt shown is subjected to...Ch. 9 - Why is strain unitless (or dimensionless)?Ch. 9 - (a) Given =1.2in. and L=100ft calculate (b) Given...Ch. 9 - A short compression member 2 in. by 2 in. in cross...Ch. 9 - A 100-ft-long rod is suspended from one end. The...Ch. 9 - Compute the total elongation of a steel bar,...Ch. 9 - A steel rod 34 in. in diameter and 25 ft long is...Ch. 9 - An aluminum rod 25mm in diameter and 4m long is...Ch. 9 - A steel rod 10 ft long is made up of two 5 ft...Ch. 9 - A titanium alloy bar elongates 0.500 in. when...Ch. 9 - Write a program that will calculate the allowable...Ch. 9 - Write a program that will compute stress, strain,...Ch. 9 - The Viking Bin Company manufactures suspended bins...Ch. 9 - Write a computer program that will calculate the...Ch. 9 - The joint between a diagonal and a chord in a...Ch. 9 - In Problem 9.26, find the required length of the...Ch. 9 - A column is supported by a base plate, pedestal,...Ch. 9 - If the soil pressure under the footing of Problem...Ch. 9 - A hopper weighing 75 kN is supported by three...Ch. 9 - A steel bar has a rectangular cross section 25 mm...Ch. 9 - A steel wire is suspended vertically from its...Ch. 9 - A W1240 shape is subjected to a tensile load of...Ch. 9 - Calculate the required diameter of steel tie rods...Ch. 9 - A 30-ft-long steel rod of circular cross section...Ch. 9 - Consider the bolted lap joint shown in Figure...Ch. 9 - An inclined member is braced with a glued block,...Ch. 9 - Calculate the force a punch press must exert if it...Ch. 9 - A 34 - in. - diameter punch is used to punch a...Ch. 9 - A control arm is keyed to a 1-in. -diameter shaft...Ch. 9 - Calculate the required width b for the key of...Ch. 9 - A 25-mm-diameter aluminum rod, 3 m long, is...Ch. 9 - A short timber post of Douglas fir is subjected to...Ch. 9 - A 1 00-ft surveyor’s steel tape with a...Ch. 9 - An 18-in-long steel rod is subjected to a tensile...Ch. 9 - Compute the magnitude of the tensile load that...Ch. 9 - A 5-mm-diameter steel wire, 18 m in length, is...Ch. 9 - A structural steel rod 112 in. in diameter and 20...Ch. 9 - A rectangular structural steel eyebar 34 in. thick...Ch. 9 - 9.50 A
in. — diameter steel rod, 100 ft long, is...Ch. 9 - For the truss shown, compute the total deformation...Ch. 9 - A steel bar with a cross section of 12 in. by 12...Ch. 9 - Rework Problem 9.52 , changing the second load...Ch. 9 - In the structure shown, the tie-back BC is a round...Ch. 9 - A hook is suspended by two steel wires, as shown....Ch. 9 - The trolley of a small hoist is supported on a...Ch. 9 - The steel piston rod to the master cylinder has a...Ch. 9 - A stranded steel brake cable is composed of 7...Ch. 9 - The piston of a steam engine is 400 mm in diameter...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A crate weighs 530 lb and is hung by three ropes attached to a steel ring at A such that the top surface is parallel to the xy plane. Point A is located at a height of h = 42 in above the top of the crate directly over the geometric center of the top surface. Use the dimensions given in the table below to determine the tension in each of the three ropes. 2013 Michael Swanbom ↑ Z C BY NC SA b x B у D Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 30 in b 43 in с 4.5 in The tension in rope AB is lb The tension in rope AC is lb The tension in rope AD is lbarrow_forwardThe airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. a.) If = 11.3°, determine the thrust and lift forces required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle - and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. Уллу Fdrag 10. Ө Fthrust cc 10 2013 Michael Swanbom BY NC SA Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to lbs. The lift force is equal to Part (b) The trajectory angle is equal to deg. The lift force is equal to lbs. lbs.arrow_forwardThe hoist consists of a single rope and an arrangement of frictionless pulleys as shown. If the angle 0 = 59°, determine the force that must be applied to the rope, Frope, to lift a load of 4.4 kN. The three-pulley and hook assembly at the center of the system has a mass of 22.5 kg with a center of mass that lies on the line of action of the force applied to the hook. e ΘΕ B CC 10 BY NC SA 2013 Michael Swanbom Fhook Note the figure may not be to scale. Frope = KN HO Fropearrow_forward
- Determine the tension developed in cables AB and AC and the force developed along strut AD for equilibrium of the 400-lb crate. x. 5.5 ft C 2 ft Z 2 ft D 6 ft B 4 ft A 2.5 ftarrow_forwardA block of mass m hangs from the end of bar AB that is 7.2 meters long and connected to the wall in the xz plane. The bar is supported at A by a ball joint such that it carries only a compressive force along its axis. The bar is supported at end B by cables BD and BC that connect to the xz plane at points C and D respectively with coordinates given in the figure. Cable BD is elastic and can be modeled as a linear spring with a spring constant k = 400 N/m and unstretched length of 6.34 meters. Determine the mass m, the compressive force in beam AB and the tension force in cable BC. Z D (c, 0, d) C (a, 0, b), A e B y f m BY NC SA x 2016 Eric Davishahl Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.1 m b 3.3 m C 2.7 m d 3.9 m e 2 m f 5.4 m The mass of the block is The compressive force in bar AB is The tension in cable S is N. kg.arrow_forwardTwo squirrels are sitting on the rope as shown. The squirrel at A has a weight of 1.2 lb. The squirrel at B found less food this season and has a weight of 0.8 lb. The angles 0 and > are equal to 50° and 60° respectively. Determine the tension force in each of the rope segments (T₁ in segment, T₂ in segment Я, and T3 in segment DD) as well as the angle a in degrees. Ө A α B Note the figure may not be to scale. T₁ = lb lb T2 T3 = = lb απ deg A BY NC SA 2013 Michael Swanbomarrow_forward
- Each cord can sustain a maximum tension of 500 N. Determine the largest mass of pipe that can be supported. B 60° A E Harrow_forward2. Link BD consists of a single bar 1 in. wide and 0.5 in. thick. Knowing that each pin has a in. diameter, determine (a) the maximum value of the normal stress in link BD and the bearing stress in link BD if 0 = 0, (b) the maximum value of the normal stress in link BD if 0 = 90. -6 in.- 12 in. 30° D 4 kipsarrow_forwardIn the image is a right rectangular pyramid of total mass m. Note the location of point Q. Determine the inertia dyadic for the pyramid P, relative to point Q for e hat unit vectors.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License