Concept explainers
(a)
Interpretation:
The oxidation number of carbon in the given carbon containing compound
Concept Introduction:
Oxidation:
Loss of electrons from an atom, ion or molecule during a
Example
Here
Oxidation number:
It is the charge of an atom, provided if the compound is composed of ions. On oxidation the oxidation number will increase and on reduction the oxidation number will decrease. It can be also called as degree of oxidation.
(b)
Interpretation:
The oxidation number of carbon in the given carbon containing compound
Concept Introduction:
Oxidation:
Loss of electrons from an atom, ion or molecule during a chemical reaction is known as oxidation. Oxidation state of atom ion or molecule will increase in this process. In simple it is the addition of oxygen. Reduction is gaining of electrons.
Example
Here
Oxidation number:
It is the charge of an atom, provided if the compound is composed of ions. On oxidation the oxidation number will increase and on reduction the oxidation number will decrease. It can be also called as degree of oxidation.
(c)
Interpretation:
The oxidation number of carbon in the given carbon containing compound
Concept Introduction:
Oxidation:
Loss of electrons from an atom, ion or molecule during a chemical reaction is known as oxidation. Oxidation state of atom ion or molecule will increase in this process. In simple it is the addition of oxygen. Reduction is gaining of electrons.
Example
Here
Oxidation number:
It is the charge of an atom, provided if the compound is composed of ions. On oxidation the oxidation number will increase and on reduction the oxidation number will decrease. It can be also called as degree of oxidation.
(d)
Interpretation:
The oxidation number of carbon in the given carbon containing compound
Concept Introduction:
Oxidation:
Loss of electrons from an atom, ion or molecule during a chemical reaction is known as oxidation. Oxidation state of atom ion or molecule will increase in this process. In simple it is the addition of oxygen. Reduction is gaining of electrons.
Example
Oxidation number:
It is the charge of an atom, provided if the compound is composed of ions. On oxidation the oxidation number will increase and on reduction the oxidation number will decrease. It can be also called as degree of oxidation.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- What is G for the following reaction? 2Br(aq)+Cl2(g)Br2(l)+2Cl(aq) Use data given in Table 19.1.arrow_forward. In each of the following reactions, identify which element is oxidized and which is reduced by assigning oxidation states. a.2Br2O3(s)+6Cl2(g)4BCl3(l)+3O2(g)b.GeH4(g)+O2(g)Ge(s)+2H2O(g)c.C2H4(g)+Cl2(g)C2H4Cl2(l)d.O2(g)+2F2(g)2OF2(g)arrow_forward4.4 Automobile exhaust often contains traces of formaldehyde (CH2O), which is another possible product of incomplete combustion. Write a balanced equation for the formation of formaldehyde during the combustion of octane. (Water will also be formed as a product.)arrow_forward
- Using Lewis structures, write balanced equations for the following reactions: (a) HCI(g)+PH3(g) (b) H3O++CH3 (c) CaO+SO3 (d) NH4++C2H5Oarrow_forwardConsider the reaction between oxygen (O2) gas and magnesium metal to form magnesium oxide. Using oxidation states, how many electrons would each oxygen atom gain, and how many electrons would each magnesium atom lose? How many magnesium atoms are needed to react with one oxygen molecule? Write a balanced equation for this reaction.arrow_forwardA novel process for obtaining magnesium from sea water involves several reactions. Write a balanced chemical equation for each step of the process. (a) The first step is the decomposition of solid calcium carbonate from seashells to form solid calcium oxide and gaseous carbon dioxide. (b) The second step is the formation of solid calcium hydroxide as the only product from the reaction of the solid calcium oxide with liquid water. (c) Solid calcium hydroxide is then added to the seawater, reacting with dissolved magnesium chloride to yield solid magnesium hydroxide and aqueous calcium chloride. (d) The solid magnesium hydroxide is added to a hydrochloric acid solution, producing dissolved magnesium chloride and liquid water. (e) Finally, the magnesium chloride is melted and electrolyzed to yield liquid magnesium metal and diatomic chlorine gas.arrow_forward
- What does it mean for a substance to be oxidized? The term “oxidation” originally came from substances reacting with oxygen gas. Explain why a substance that reacts with oxygen gas will always be oxidized.arrow_forwardChromium has been investigated as a coating for steel cans. The thickness of the chromium film is determined by dissolving a sample of a can in acid and oxidizing the resulting Cr3+ to Cr2O72 with the peroxydisulfate ion: S2O82(aq) + Cr3+(aq) + H2O(l) Cr2O72(aq) + SO42(aq) + H+(aq) (Unbalanced) After removal of unreacted S2O82 an excess of ferrous ammonium sulfate [Fe(NH4)2(SO4)26H2O] is added, reacting with Cr2O72 produced from the first reaction. The unreacted Fe2+ from the excess ferrous ammonium sulfate is titrated with a separate K2Cr2O7 solution. The reaction is: H+(aq) + Fe2+(aq) + Cr2O72(aq) Fe3+(aq) + Cr3+(aq) + H2O(l) (Unbalanced) a. Write balanced chemical equations for the two reactions. b. In one analysis, a 40.0-cm2 sample of a chromium-plated can was treated according to this procedure. After dissolution and removal of excess S2O82, 3.000 g of Fe(NH4)2(SO4)26H2O was added. It took 8.58 mL of 0.0520 M K2Cr2O7 solution to completely react with the excess Fe2+. Calculate the thickness of the chromium film on the can. (The density of chromium is 7.19 g/cm3)arrow_forwardMany oxidationreduction reactions can be balanced by inspection. Try to balance the following reactions by inspection. In each reaction, identify the substance reduced and the substance oxidized. a. Al(s) + HCl(aq) AlCl3(aq) + H2(g) b. CH4(g) + S(s) CS2(l) + H2S(g) c. C3H8(g) + O2(g) CO2(g) + H2O(l) d. Cu(s) + Ag+(aq) Ag(s) + Cu2+(aq)arrow_forward
- 11. The following reaction will be: a. 2 y 3 b. 3 c. 2 d. 1arrow_forwardWorksheets! WORKSHEET 2 Part I. Read and answer the following questions. 1. What is oxidation? 2. What is reduction? 3. Electron-accepting species which tend to undergo a reduction in redox reactions are called 4. Write the 4 conventional kinds of primary batteries. 5. Explain the hazards of using batteries. 6. List at least 3 examples of objects that are powered by primary batteries. C. a. b. 7. List at least 3 examples of objects that are powered by secondary batteries. 8. For electrochemical corrosion to occur, three ingredients must be present. Those are: b. a. C. 9. TRUE or FALSE. During electrolysis, ionic substances are decomposed into simpler. substances when an electric current is passed through them. 10. TRUE or FALSE. One of the factors affecting electrolysis is the undervoltage of the electrodes. Part II. Choose the letter of the best answer. 1. It can be defined as a chemical reaction in which electrons are transferred between two reactants participating in it. a.…arrow_forwardIn which two compounds does nitrogen have the same oxidation number? N₂O3 and HNO3 N₂O5 and HNO3 NO₂ and N₂03 N₂O4 and HNO2 HNO2 and NH3 A. B. C. D. E.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning