The oxidation of the sugar glucose, C 6 H 12 O 6 , is described by the following equation: C 6 H 12 O 6 ( s ) + 6 CO 2 ( g ) + 6 H 2 O ( l ) Δ H = − 2816 kJ The metabolism of glucose gives the same products, although the glucose reacts with oxygen in a series of steps in the body. (a) How much heat in kilojoules can be produced by the metabolism of 1.0 g of glucose? (b) How many Calories can be produced by the metabolism of 1.0 g of glucose?
The oxidation of the sugar glucose, C 6 H 12 O 6 , is described by the following equation: C 6 H 12 O 6 ( s ) + 6 CO 2 ( g ) + 6 H 2 O ( l ) Δ H = − 2816 kJ The metabolism of glucose gives the same products, although the glucose reacts with oxygen in a series of steps in the body. (a) How much heat in kilojoules can be produced by the metabolism of 1.0 g of glucose? (b) How many Calories can be produced by the metabolism of 1.0 g of glucose?
The oxidation of the sugar glucose,
C
6
H
12
O
6
, is described by the following equation:
C
6
H
12
O
6
(
s
)
+
6
CO
2
(
g
)
+
6
H
2
O
(
l
)
Δ
H
=
−
2816
kJ
The metabolism of glucose gives the same products, although the glucose reacts with oxygen in a series of steps in the body.
(a) How much heat in kilojoules can be produced by the metabolism of 1.0 g of glucose?
(b) How many Calories can be produced by the metabolism of 1.0 g of glucose?
Chemical pathways by which living things function, especially those that provide cellular energy, such as the transformation of energy from food into the energy of ATP. Metabolism also focuses on chemical pathways involving the synthesis of new biomolecules and the elimination of waste.
QUESTION: Find the standard deviation for the 4 different groups
5.298
3.977
223.4
148.7
5.38
4.24
353.7
278.2
5.033
4.044
334.6
268.7
4.706
3.621
305.6
234.4
4.816
3.728
340.0
262.7
4.828
4.496
304.3
283.2
4.993
3.865
244.7
143.6
STDEV =
STDEV =
STDEV =
STDEV =
QUESTION: Fill in the answers in the empty green boxes regarding 'Question 5: Calculating standard error of regression'
*The images of the data showing 'coefficients for the standard curve' have been provided
Using the Nernst equation to calculate nonstandard cell voltage
Try Again
Your answer is wrong. In addition to checking your math, check that you used the right data and DID NOT round any intermediate calculations.
A galvanic cell at a temperature of 25.0 °C is powered by the following redox reaction:
2+
2+
Sn²+ Ba(s)
(aq) + Ba (s) Sn (s) + Ba²+ (aq)
→>>
Suppose the cell is prepared with 6.10 M Sn
2+
2+
in one half-cell and 6.62 M Ba
in the other.
Calculate the cell voltage under these conditions. Round your answer to 3 significant digits.
1.71 V
☐ x10
☑
5
0/5
?
00.
18
Ar
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY