A 0.500-kg sphere moving with a velocity expressed as
(a)
The final velocity of the
Answer to Problem 83AP
The final velocity of the
Explanation of Solution
Given information: The mass of sphere is
According to the law of conservation of momentum,
Here,
Substitute
The final velocity of the heavier sphere is zero due to which the kinetic energy of the sphere is also zero. This is due to the loss of energy. Thus, the collision is inelastic.
Conclusion:
Therefore, the final velocity of the
(b)
The final velocity of the
Answer to Problem 83AP
The final velocity of the
Explanation of Solution
Given information: The mass of sphere is
From equation (1), the law of conservation of momentum is,
Substitute
Conclusion:
Therefore, the final velocity of the
(c)
The value of
Answer to Problem 83AP
The value of
Explanation of Solution
Given information: The mass of sphere is
From equation (1), the law of conservation of momentum is,
Substitute
According to the law of conservationof energy,
Substitute
Solve the equation (2) and (3).
Conclusion:
Therefore, the value of
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers with Modern, Revised Hybrid (with Enhanced WebAssign Printed Access Card for Physics, Multi-Term Courses)
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning