Concept explainers
(a)
To Calculate: The moment of inertia of combination of platform-drum.
(a)
Answer to Problem 82P
The moment of inertia of combination of platform-drum is
Explanation of Solution
Given data:
Radius of the concentric drum,
Mass of the hanging object,
Distance through which the object falls,
Time,
Formula used:
Torque,
Where, I is the moment of inertia and
From Newton’s second law of motion:
Where, F represents force, m represents mass and a represents acceleration.
Second equation of motion is:
Where, s is the displacement, t is the time, a is the acceleration and
Calculation:
Apply the Newton’s second law of motion to the platform
Apply the Newton’s second law of motion to the weight:
Relation between angular acceleration and acceleration is
Substituting for
Now, substituting for the tension in equation
The relation among the distance, acceleration and time is given by
The intial velocity
Substitute for the initial velocity
The moment of inertia of combinaiton of platform-drum is:
Conclusion:
The moment of inertia of combination of platform-drum is
(b)
To Calculate: The total moment of inertia.
(b)
Answer to Problem 82P
The total moment of inertia is
Explanation of Solution
Given data:
Radius of the concentric drum,
Mass of the hanging object,
Distance fall by the object,
Time,
Formula used:
From the previous part:
Calculation:
Substitute the values and solve for total moment of inertia:
Conclusion:
Total moment of inertia is
(c)
To Calculate: The moment of inertia of the object.
(c)
Answer to Problem 82P
The moment of inertia of the object is
Explanation of Solution
Given data:
The total moment of inertia is
The moment of inertia of combination of platform-drum is
Formula used:
The moment of inertia of the object can be calculated by using the formula:
Calculation:
Moment of inertia of the object,
Conclusion:
Moment of inertia of the object is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers, Vol. 1
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning