Concept explainers
(a)
The speed of the ball just after impact.
(a)
Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Formula used:
Applying impulse-momentum theorem to the ball,
Where
Calculation:
FIGURE:
Substituting numerical values in equation
Conclusion:
The speed of the ball just after impact is
(b)
The angular speed of the ball after impact.
(b)
Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Formula used:
Applying Newton’s second law in rotational form to ball,
Where,
Moment of inertia with respect to an axis through the center of mass of the ball is
Substituting this in equation
From equation
Substituting the expression for
Calculation:
FIGURE: 2
Substituting the numerical values in equation
Conclusion:
The angular speed of the ball after impact is
(c)
The speed of the ball when it begins to roll without slipping.
(c)
Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Coefficient of kinetic friction,
Formula used:
Constant acceleration equation that relates the speed of the ball to the acceleration and time,
Where,
Referring to the force diagram shown in figure 3, applying Newton’s second law to the ball,
And
Where,
But,
Where,
From equation
Substituting this in equation
Substituting the expression for
Substituting
From equation
Substituting for
Now let us write constant-acceleration equation that connects angular speed of the ball to the angular acceleration and time,
When the ball rolls without slipping
From equation
Hence,
Now equating the expressions
On rearranging,
Calculation:
FIGURE:3
Substituting the numerical values in equation
Substituting the numerical values in equation
Conclusion:
The speed of the ball when it begins to roll without slipping is
(d)
The distance travelled by the ball along the surface before it begins to roll without slipping.
(d)
Answer to Problem 104P
Explanation of Solution
Given: Coefficient of kinetic friction,
Formula used:
The distance travelled by the ball in time
Since,
Where,
Calculation:
FIGURE: 4
From the part
Substituting the numerical values in equation
Conclusion:
The distance travelled by the ball along the surface before it begins to roll without slipping is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers, Vol. 1
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College