
Concept explainers
(a)
The speed of the ball just after impact.
(a)

Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Formula used:
Applying impulse-momentum theorem to the ball,
Where
Calculation:
FIGURE:
Substituting numerical values in equation
Conclusion:
The speed of the ball just after impact is
(b)
The angular speed of the ball after impact.
(b)

Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Formula used:
Applying Newton’s second law in rotational form to ball,
Where,
Moment of inertia with respect to an axis through the center of mass of the ball is
Substituting this in equation
From equation
Substituting the expression for
Calculation:
FIGURE: 2
Substituting the numerical values in equation
Conclusion:
The angular speed of the ball after impact is
(c)
The speed of the ball when it begins to roll without slipping.
(c)

Answer to Problem 104P
Explanation of Solution
Given:
Mass of a uniform solid ball =
Radius of the ball =
The height above the horizontal surface at which the force is applied on the ball,
During the impact, the force (F) increases from
Therefore, average force,
Coefficient of kinetic friction,
Formula used:
Constant acceleration equation that relates the speed of the ball to the acceleration and time,
Where,
Referring to the force diagram shown in figure 3, applying Newton’s second law to the ball,
And
Where,
But,
Where,
From equation
Substituting this in equation
Substituting the expression for
Substituting
From equation
Substituting for
Now let us write constant-acceleration equation that connects angular speed of the ball to the angular acceleration and time,
When the ball rolls without slipping
From equation
Hence,
Now equating the expressions
On rearranging,
Calculation:
FIGURE:3
Substituting the numerical values in equation
Substituting the numerical values in equation
Conclusion:
The speed of the ball when it begins to roll without slipping is
(d)
The distance travelled by the ball along the surface before it begins to roll without slipping.
(d)

Answer to Problem 104P
Explanation of Solution
Given: Coefficient of kinetic friction,
Formula used:
The distance travelled by the ball in time
Since,
Where,
Calculation:
FIGURE: 4
From the part
Substituting the numerical values in equation
Conclusion:
The distance travelled by the ball along the surface before it begins to roll without slipping is
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers, Vol. 1
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





