Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 7P
To determine
How many stars can a giant molecular cloud make if a giant molecular cloud has a mass of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W).
(Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)
If a giant molecular cloud has a mass of 2.0 ✕ 1035 kg, and it converts 8 percent of its mass into stars during a single encounter with a shock wave, how many stars can it make? Assume the stars each contain 1 solar mass. (Hint: The mass of the Sun is 1.99 ✕ 1030 kg.)
A 46M Sun
main sequence star loses 1 Msun of mass over 105 years. (Due to the nature of this problem, do not use rounded intermediate values in your calculations including answers submitted in WebAssign.)
How many solar masses did it lose in a year?
By how much will its luminosity decrease if this mass loss continues over 0.8 million years?
Due to the nature of this problem, for all parts, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.
To determine the number of solar masses lost per year, divide the mass lost by the number of years over which it was lost.
Mlost
tlost-yr
Part 1 of 3
dM =
dM =
MSun/yr
Chapter 9 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 9 - Prob. 1RQCh. 9 - Why evidence can you cite that the interstellar...Ch. 9 - Prob. 3RQCh. 9 - Prob. 4RQCh. 9 - Prob. 5RQCh. 9 - Prob. 6RQCh. 9 - Prob. 7RQCh. 9 - Prob. 8RQCh. 9 - Prob. 9RQCh. 9 - Prob. 10RQ
Ch. 9 - Prob. 11RQCh. 9 - Prob. 12RQCh. 9 - How does the CNO cycle differ from the...Ch. 9 - Prob. 14RQCh. 9 - Step-by-step, explain how energy flows from the...Ch. 9 - Prob. 16RQCh. 9 - Prob. 17RQCh. 9 - Prob. 18RQCh. 9 - Prob. 19RQCh. 9 - Prob. 20RQCh. 9 - Prob. 1DQCh. 9 - What is your favorite home-cooked meal? In terms...Ch. 9 - Prob. 3DQCh. 9 - How does hydrostatic equilibrium relate to hot-air...Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - If a protostellar disk is 200 AU in radius and the...Ch. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - H much energy is produced when the CNO cycle...Ch. 9 - Prob. 16PCh. 9 - Prob. 1LTLCh. 9 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forwardIf an X-ray binary consists of a 17-solar-mass star and a neutron star orbiting each other every 23.2 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars, MA + MB = a^3/p^2 make sure you express quantities in units of AU, solar masses, and years. Assume the mass of the neutron star is 1.4 solar masses.)arrow_forwardA red giant that was originally a 9.5MSun main-sequence star loses a solar mass in 100,000 years via a superwind. What is this mass loss rate in units of solar masses per year? (the answer is not 0.000095 solar masses per year). Additionally, at this mass loss rate, what will the red giant's mass be after 0.5 million years? (Enter your answer as a multiple of MSun.)arrow_forward
- At the average density of of a star-forming molecular cloud, about 1180 atoms per cm3, determine how large a sphere you would need to encompass mass equal to that of the Sun? Enter the radius of this sphere in light-years. (HINTS: 1180 atoms per cm3 corresponds to a density of 1.97×10-18kg/m^3; the mass of the Sun is 2×1030kg)arrow_forwardUsing solar units, we find that a star has 4 times the luminosity of the Sun, a mass 1.25 times the mass of the Sun, and a surface temperature of 4090 K (take the Sun's surface temperature to be 5784 K for the sake of this problem). This means the star has a radius of.................... solar radii and is a .................... star (use the classification).arrow_forwardIn a star of 1 solar mass (M☉), the core hydrogen burning phase, also known as the main sequence phase, lasts for approximately 10 billion years. Suppose there's a star of 15 solar masses (M☉). Stars of higher mass burn through their hydrogen at a faster rate, following an approximate relation that the lifetime of a star on the main sequence (T) is proportional to its mass (M) raised to the power of -2.5 (T ∝ M^-2.5). Calculate approximately how long this 15 solar mass star would remain in the main sequence phase, compared to the 1 solar mass star.arrow_forward
- Select all of the statements about the main sequence stage in the life of a star that are TRUE: All stars spend the majority of their lives in the main sequence stage. Most stars lose a significant amount of mass while they are on the Main Sequence. Different stars spend a different amounts of time (number of years) in the main sequence stage, depending on the characteristics they were born with. Main sequence stars are rare in the Galaxy, so we are lucky to be living around one. During the main sequence stage, energy to power the star is provided by the fusion of hydrogen.arrow_forwardThe Orion Nebula is about 20 light-years (20 × 1018 cm) across, enclosing a roughly spherical area with a volume of 4.19 × 1057 cm3. Calculate the number of 0.1 solar mass stars that might be formed in such a nebula. Assume that the nebula has a density of 1000 atoms/cm3.arrow_forwardThe mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forward
- This star has a mass of 3.3 MSun. What is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.arrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forwardA giant molecular cloud is 22 pc in diameter and has a density of 240 hydrogen molecules/cm3. What is its mass in units of solar masses? (Notes: The volume of a sphere is 4/3 πR3 and the mass of a hydrogen atom is 1.67 ✕ 10−27 kg. A hydrogen molecule consists of 2 H atoms.) Answer in Kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning