Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 14RQ
To determine
The concept by which the pressure-temperature thermostat control the nuclear reactions inside stars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What are the two main nuclear chains known in stars and what are they responsible for? What are the differences between both?
Don't copy from Google i need unique answer
What is the element that was mostly produced in both processes (PPCR and CNO cycle) and what is the significance to the life cycle of stars?
QUESTION 16
Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in
decreases in
until it makes a turn towards the main sequence, as it follows its evolutionary track.
Protostars of different masses follow diferent
paths on their way to the main sequence.
107
Luminosity (L)
10
105
10
107
10²
101
1
10-1
10-2
10-3
Spectral
type
0.01 R
0.001
Re
60 M
MAIN SEQUENCE
40,000 30,000
20 Mau
10 Mgun
5 Mun
0.1 Run
Ren
radius; temperature
luminosity; radius
3 Min.
05 BO
temperature; luminosity
Oluminosity: temperature
radius: luminosity
1 M
10,000 6000
Surlace temperature (K)
1,000 Rs
2 M STAR
L
0.8 M
B5 AO FOGO КБ МБ
-10
+10
3000
Absolute visual magnitude
and
Chapter 9 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 9 - Prob. 1RQCh. 9 - Why evidence can you cite that the interstellar...Ch. 9 - Prob. 3RQCh. 9 - Prob. 4RQCh. 9 - Prob. 5RQCh. 9 - Prob. 6RQCh. 9 - Prob. 7RQCh. 9 - Prob. 8RQCh. 9 - Prob. 9RQCh. 9 - Prob. 10RQ
Ch. 9 - Prob. 11RQCh. 9 - Prob. 12RQCh. 9 - How does the CNO cycle differ from the...Ch. 9 - Prob. 14RQCh. 9 - Step-by-step, explain how energy flows from the...Ch. 9 - Prob. 16RQCh. 9 - Prob. 17RQCh. 9 - Prob. 18RQCh. 9 - Prob. 19RQCh. 9 - Prob. 20RQCh. 9 - Prob. 1DQCh. 9 - What is your favorite home-cooked meal? In terms...Ch. 9 - Prob. 3DQCh. 9 - How does hydrostatic equilibrium relate to hot-air...Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - If a protostellar disk is 200 AU in radius and the...Ch. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - H much energy is produced when the CNO cycle...Ch. 9 - Prob. 16PCh. 9 - Prob. 1LTLCh. 9 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The text says a star does not change its mass very much during the course of its main-sequence lifetime. While it is on the main sequence, a star converts about 10% of the hydrogen initially present into helium (remember it’s only the core of the star that is hot enough for fusion). Look in earlier chapters to find out what percentage of the hydrogen mass involved in fusion is lost because it is converted to energy. By how much does the mass of the whole star change as a result of fusion? Were we correct to say that the mass of a star does not change significantly while it is on the main sequence?arrow_forwardDo you think that nuclear fusion takes place in the atmospheres of stars? Why or why not?arrow_forwardAccording to the text, a star must be hotter than about 25,000 K to produce an H II region. Both the hottest white dwarfs and main-sequence O stars have temperatures hotter than 25,000 K. Which type of star can ionize more hydrogen? Why?arrow_forward
- Are supergiant stars also extremely massive? Explain the reasoning behind your answer.arrow_forwardH II regions can exist only if there is a nearby star hot enough to ionize hydrogen. Hydrogen is ionized only by radiation with wavelengths shorter than 91.2 nm. What is the temperature of a star that emits its maximum energy at 91.2 nm? (Use Wien’s law from Radiation and Spectra.) Based on this result, what are the spectral types of those stars likely to provide enough energy to produce H II regions?arrow_forwardWhy do nebulae near hot stars look red? Why do dust clouds near stars usually look blue?arrow_forward
- Describe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardThe evolutionary track of a medium mass star is shown below. Which cut-away core diagram correctly illustrates the source of fusion energy when the star is at the indicated position? (A) H>He (B) He>C (C) (D) H>He H>He He>C Не Temperature А. (А) В. (В) C. (C) D.(D) Luminosity -arrow_forwardFor a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forward
- If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forwardWhat are the main products of the fusion reactions that take place in low mass main sequence stars?arrow_forwardWhat are the different kinds of thermonuclear fusion in main-sequence stars and at what temperatures do they occur?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax