The N 2 O molecule is linear and polar. On the basis of this experimental evidence, the correct arrangement among NNO and NON is to be stated with explanation. Lewis structure of N 2 O is to be drawn and formal charge on each atom and hybridization of central atom is to be stated. Multiple bonding in NNO is to be described. Concept introduction: When the atomic orbitals overlap with each other in the region where density of electrons is high, then molecular orbitals are formed. Overlap of the atomic orbitals determines the efficiency of the interaction between the atomic orbitals. Energy of bonding molecular orbitals is less than the nonbonding molecular orbitals. To determine: The correct arrangement for N 2 O molecule.
The N 2 O molecule is linear and polar. On the basis of this experimental evidence, the correct arrangement among NNO and NON is to be stated with explanation. Lewis structure of N 2 O is to be drawn and formal charge on each atom and hybridization of central atom is to be stated. Multiple bonding in NNO is to be described. Concept introduction: When the atomic orbitals overlap with each other in the region where density of electrons is high, then molecular orbitals are formed. Overlap of the atomic orbitals determines the efficiency of the interaction between the atomic orbitals. Energy of bonding molecular orbitals is less than the nonbonding molecular orbitals. To determine: The correct arrangement for N 2 O molecule.
Solution Summary: The author explains that the correct arrangement among NNO and () is to be stated with explanation.
Interpretation: The
N2O molecule is linear and polar. On the basis of this experimental evidence, the correct arrangement among
NNO and
NON is to be stated with explanation. Lewis structure of
N2O is to be drawn and formal charge on each atom and hybridization of central atom is to be stated. Multiple bonding in
NNO is to be described.
Concept introduction: When the atomic orbitals overlap with each other in the region where density of electrons is high, then molecular orbitals are formed. Overlap of the atomic orbitals determines the efficiency of the interaction between the atomic orbitals.
Energy of bonding molecular orbitals is less than the nonbonding molecular orbitals.
To determine: The correct arrangement for
N2O molecule.
(b)
Interpretation Introduction
Interpretation: The
N2O molecule is linear and polar. On the basis of this experimental evidence, the correct arrangement among
NNO and
NON is to be stated with explanation. Lewis structure of
N2O is to be drawn and formal charge on each atom and hybridization of central atom is to be stated. Multiple bonding in
NNO is to be described.
Concept introduction: When the atomic orbitals overlap with each other in the region where density of electrons is high, then molecular orbitals are formed. Overlap of the atomic orbitals determines the efficiency of the interaction between the atomic orbitals.
Energy of bonding molecular orbitals is less than the nonbonding molecular orbitals.
To determine: The Lewis structure of
N2O, formal charge on each atom and hybridization of central atom.
(c)
Interpretation Introduction
Interpretation: The
N2O molecule is linear and polar. On the basis of this experimental evidence, the correct arrangement among
NNO and
NON is to be stated with explanation. Lewis structure of
N2O is to be drawn and formal charge on each atom and hybridization of central atom is to be stated. Multiple bonding in
NNO is to be described.
Concept introduction: When the atomic orbitals overlap with each other in the region where density of electrons is high, then molecular orbitals are formed. Overlap of the atomic orbitals determines the efficiency of the interaction between the atomic orbitals.
Energy of bonding molecular orbitals is less than the nonbonding molecular orbitals.
To determine: The description of multiple bonding in
N2O.
bre
The reaction sequence shown in Scheme 5 demonstrates the synthesis of a
substituted benzene derivative Q.
wolsd works 2
NH2
NaNO2, HCI
(apexe) 13× (1
HNO3, H2SO4
C6H5CIN2
0°C
HOTE
CHINO₂
N
O
*O₂H (
PO
Q
Я
Scheme 5
2 bag abouoqmics to sounde odi WEIC
(i)
Draw the structure of intermediate O.
[2 marks]
to noitsmot od: tot meinedogm, noit so oft listsb ni zaupaib bas wa
(ii) Draw the mechanism for the transformation of aniline N to intermediate O.
Spoilage
(b)
[6 marks]
(iii) Identify the reagent X used to convert compound O to the iodinated compound
[tom E
P.
vueimado oilovonsa ni moitos nolisbnolov ayd toes ai tedw nisiqx
(iv) Identify the possible structures of compound Q.
[2 marks]
[2 marks]
[shom 2]
(v)
bus noires goiribbeolovo xnivollot adj to subora sidab
Draw the mechanism for the transformation of intermediate P to compound Q.
[5 marks]
vi
(vi) Account for the regiochemical outcome observed in the reaction forming
compound Q.
[3 marks]
PROBLEM 4 Solved
Show how 1-butanol can be converted into the following compounds:
a.
PROBLEM 5+
b.
d.
-C=
N
Which alkene is the major product of this dehydration?
OH
H2SO4
heat