The following summary data on bending strength (lb-in/in) of joints is taken from the article “Bending Strength of Corner Joints Constructed with Injection Molded Splines” (Forest Products J., April, 1997: 89–92).
Sample | Sample | Sample | |
Type | Size | SD | |
Without side coating | 10 | 80.95 | 9.59 |
With side coating | 10 | 63.23 | 5.96 |
a. Calculate a 95% lower confidence bound for true average strength of joints with a side coating.
b. Calculate a 95% lower prediction bound for the strength of a single joint with a side coating. c. Calculate an interval that, with 95% confidence, includes the strength values for at least 95% of the population of all joints with side coatings.
d. Calculate a 95% confidence interval for the difference between true average strengths for the two types of joints.
a.
Calculate the 95% lower confidence bound for the true average strength of the joints with a side coating.
Answer to Problem 72SE
The 95% lower confidence bound for the true average bending strength of the joints with a side coatingis at least59.78(lb-in/in).
Explanation of Solution
Given info:
The information is based on the bending strength (lb-in/in) of the joints:
Let
Calculation:
Lower Confidence interval:
The Lower Confidence level can be defined is,
Where
Lower Confidence interval:
Step-by-step procedure to obtain the confidence interval using the MINITAB software:
- Choose Stat > Basic Statistics > One sample t.
- Choose Summarized columns. Enter the sample mean as 63.23 and standard deviation as 5.96.
- Choose Options.
- In Confidence level, enter 95.
- In Alternative, select Greater than.
- Click OK in all the dialog boxes.
Output using the MINITAB software is given below:
From the MINITAB output, the lower confidence bound is 59.78.
Interpretation:
Thus, The 95% lower confidence bound for the true average bending strength of the joints with a side coating is at least 59.78(lb-in/in).
b.
Calculate the 95% lower prediction bound for the true average strength of the single joint with a side coating.
Answer to Problem 72SE
The 95% lower prediction bound for the true average bending strength of the single joint with a side coating will be at least 51.77(lb-in/in).
Explanation of Solution
Given info:
Let
Calculation:
Lower Prediction interval:
Where
Degrees of freedom:
The degrees of freedom is
Thus, for sample of size 10,
Hence, the degrees of freedom are 9.
Level of significance:
It is given that the level of significance is 0.05.
The lower prediction bound for the true average bending strength of the single joint with a side coating is obtained as given below:
From Appendix Tables, “Table A.5 Critical Values for t Distribution”, the critical value for the 9df with level of significance 0.025 is
The lower prediction bound is given by;
Thus, the 95% lower prediction bound is 51.77.
Thus, the 95% lower prediction bound for the true average bending strength of the single joint with a side coating will be at least 51.77(lb-in/in).
c.
Calculate the 95% confidence interval that includes the strength values for at least 95% of the population of all joints with side coatings.
Answer to Problem 72SE
The 95% confidence interval that includes the strength values for at least 95% of the population of all joints with side coatings lies between 43.09(lb-in/in) and 83.37(lb-in/in).
Explanation of Solution
Given info:
Let
Calculation:
To find thestrength values for at least 95%, use the method of tolerance interval.
Tolerance interval:
Where
Degrees of freedom:
The degrees of freedom is
Thus, for sample of size 10,
Hence, the degrees of freedom are 9.
Level of significance:
It is given that the level of significance is 0.05.
The tolerance intervalthat includes the strength values for at least 95% of the population of all joints with side coatings is obtained as given below:
From Appendix Tables, “Table A.6 Tolerance Critical Values for Normal population Distribution”, the tolerance critical value for the n = 10 with confidence level 95% for 95% population is
The interval is given by;
Thus, the 95% tolerance interval is (43.09, 83.37).
Thus, the 95% tolerance interval that includes the strength values for at least 95% of the population of all joints with side coatings lies between 43.09(lb-in/in) and 83.37(lb-in/in).
Interpretation:
Hence it is highly confident that at least 95% of the population of all joints with side coatings have the bend strength between 43.09(lb-in/in) and 83.37(lb-in/in).
d.
Find the 95% confidence interval for the difference between two average strengths for the two types of joints.
Answer to Problem 72SE
The interpretation is, there is 95% confidence that the average strength for the joints without side coating is greater than that of strength for the joints with side coating by between10.11(lb-in/in) and 25.33(lb-in/in).
Explanation of Solution
Given info:
Let
Calculation:
Let
Requirements for a two sample t-test:
- The sample X and Y taken from the population is selected at random.
- The samples X and Y are dependent of each other.
- Samples must be distributed to normal.
Here, the samples selected from the strength without coating and with coating were selected at random and dependent. Moreover, the sample size is assumed to be normally distributed. Hence, the assumptions are satisfied.
Thus, the condition is satisfied.
Confidence interval:
The confidence interval is given as,
Where
Confidence interval:
Step-by-step procedure to obtain the confidence interval using the MINITAB software:
- Choose Stat > Basic Statistics > 2-sample t test.
- Choose Summarized data.
- In first, enter Sample size as 10, Mean as 80.95, Standard deviation as 9.59.
- In second, enter Sample size as 10, Mean as 63.23, Standard deviation as 5.96.
- Choose Options.
- In Confidence level, enter 95.
- In Alternative, select Not equal.
- Click OK in all the dialog boxes.
Output using the MINITAB software is given below:
From the MINITAB output, the confidence interval is (10.11, 25.33).
Thus, there is 95% confidence that the average strength for the joints without side coating is greater than that of strength for the joints with side coating by between 10.11(lb-in/in).and 25.33(lb-in/in).
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Probability and Statistics for Engineering and the Sciences, Loose-leaf Version, 9th + WebAssign Printed Access Card for Devore's Probability ... and the Sciences, 9th Edition, Single-Term
- Obtain the linear equation for trend for time series with St² = 140, Ey = 16.91 and Σty= 62.02, m n = 7arrow_forwardA quality characteristic of a product is normally distributed with mean μ and standard deviation σ = 1. Speci- fications on the characteristic are 6≤x≤8. A unit that falls within specifications on this quality characteristic results in a profit of Co. However, if x 8, the profit is -C2. Find the value ofμ that maximizes the expected profit.arrow_forwardA) The output voltage of a power supply is normally distributed with mean 5 V and standard deviation 0.02 V. If the lower and upper specifications for voltage are 4.95 V and 5.05 V, respectively, what is the probability that a power supply selected at random conform to the specifications on voltage? B) Continuation of A. Reconsider the power supply manufacturing process in A. Suppose We wanted to improve the process. Can shifting the mean reduce the number of nonconforming units produced? How much would the process variability need to be reduced in order to have all but one out of 1000 units conform to the specifications?arrow_forward
- der to complete the Case X T Civil Service Numerical Test Sec X T Casework Skills Practice Test Maseline Vaseline x + euauthoring.panpowered.com/DeliveryWeb/Civil Service Main/84589a48-6934-4b6e-a6e1-a5d75f559df9?transferToken-News NGSSON The table below shows the best price available for various items from 4 uniform suppliers. The prices do not include VAT (charged at 20%). Item Waterproof boots A1-Uniforms (£)Best Trade (£)Clothing Tech (£)Dress Right (£) 59.99 39.99 59.99 49.99 Trousers 9.89 9.98 9.99 11.99 Shirts 14.99 15.99 16.99 12.99 Hi-Vis vest 4.49 4.50 4.00 4.00 20.00 25.00 19.50 19.99 Hard hats A company needs to buy a set of 12 uniforms which includes 1 of each item. If the special offers are included which supplier is cheapest? OOO A1-Uniforms Best Trade Clothing Tech Q Search + ** 109 8 CO* F10 Home F11 F12 6arrow_forwardto complete the Case × T Civil Service Numerical Test Sec x T Casework Skills Practice Test + Vaseline euauthoring.panpowered.com/DeliveryWeb/Civil Service Main/84589a48-b934-4b6e-a6e1-a5d75f559df9?transferToken=MxNewOS NGFSPSZSMOMzuz The table below shows the best price available for various items from 4 uniform suppliers. The prices do not include VAT (charged at 20%). Item A1-Uniforms (£)Best Trade (£)Clothing Tech (£)Dress Right (£) Waterproof boots 59.99 39.99 59.99 49.99 Trousers 9.89 9.98 9.99 11.99 Shirts 14.99 15.99 16.99 12.99 Hi-Vis vest 4.49 4.50 4.00 4.00 20.00 25.00 19.50 19.99 Hard hats A company needs to buy a set of 12 uniforms which includes 1 of each item. If the special offers are included, which supplier is cheapest? O O O O A1-Uniforms Best Trade Clothing Tech Dress Right Q Search ENG L UK +0 F6 四吧 6 78 ㄓ F10 9% * CO 1 F12 34 Oarrow_forwardCritics review films out of 5 based on three attributes: the story, the special effects and the acting. The ratings of four critics for a film are collected in the table below.CriticSpecialStory rating Effects rating Acting rating Critic 14.44.34.5Critic 24.14.23.9Critic 33.943.4Critic 44.24.14.2Critic 1 also gave the film a rating for the Director's ability. If the average of Critic 1's ratings was 4.3 what rating did they give to the Director's ability?3.94.04.14.24.3arrow_forward
- Two measurements are made of some quantity. For the first measurement, the average is 74.4528, the RMS error is 6.7441, and the uncertainty of the mean is 0.9264. For the second one, the average is 76.8415, the standard deviation is 8.3348, and the uncertainty of the mean is 1.1448. The expected value is exactly 75. 13. Express the first measurement in public notation. 14. Is there a significant difference between the two measurements? 1 15. How does the first measurement compare with the expected value? 16. How does the second measurement compare with the expected value?arrow_forwardA hat contains slips of paper numbered 1 through 6. You draw two slips of paper at random from the hat,without replacing the first slip into the hat.(a) (5 points) Write out the sample space S for this experiment.(b) (5 points) Express the event E : {the sum of the numbers on the slips of paper is 4} as a subset of S.(c) (5 points) Find P(E)(d) (5 points) Let F = {the larger minus the smaller number is 0}. What is P(F )?(e) (5 points) Are E and F disjoint? Why or why not?(f) (5 points) Find P(E ∪ F )arrow_forwardIn addition to the in-school milk supplement program, the nurse would like to increase the use of daily vitamin supplements for the children by visiting homes and educating about the merits of vitamins. She believes that currently, about 50% of families with school-age children give the children a daily megavitamin. She would like to increase this to 70%. She plans a two-group study, where one group serves as a control and the other group receives her visits. How many families should she expect to visit to have 80% power of detecting this difference? Assume that drop-out rate is 5%.arrow_forward
- A recent survey of 400 americans asked whether or not parents do too much for their young adult children. The results of the survey are shown in the data file. a) Construct the frequency and relative frequency distributions. How many respondents felt that parents do too much for their adult children? What proportion of respondents felt that parents do too little for their adult children? b) Construct a pie chart. Summarize the findingsarrow_forwardThe average number of minutes Americans commute to work is 27.7 minutes (Sterling's Best Places, April 13, 2012). The average commute time in minutes for 48 cities are as follows: Click on the datafile logo to reference the data. DATA file Albuquerque 23.3 Jacksonville 26.2 Phoenix 28.3 Atlanta 28.3 Kansas City 23.4 Pittsburgh 25.0 Austin 24.6 Las Vegas 28.4 Portland 26.4 Baltimore 32.1 Little Rock 20.1 Providence 23.6 Boston 31.7 Los Angeles 32.2 Richmond 23.4 Charlotte 25.8 Louisville 21.4 Sacramento 25.8 Chicago 38.1 Memphis 23.8 Salt Lake City 20.2 Cincinnati 24.9 Miami 30.7 San Antonio 26.1 Cleveland 26.8 Milwaukee 24.8 San Diego 24.8 Columbus 23.4 Minneapolis 23.6 San Francisco 32.6 Dallas 28.5 Nashville 25.3 San Jose 28.5 Denver 28.1 New Orleans 31.7 Seattle 27.3 Detroit 29.3 New York 43.8 St. Louis 26.8 El Paso 24.4 Oklahoma City 22.0 Tucson 24.0 Fresno 23.0 Orlando 27.1 Tulsa 20.1 Indianapolis 24.8 Philadelphia 34.2 Washington, D.C. 32.8 a. What is the mean commute time for…arrow_forwardMorningstar tracks the total return for a large number of mutual funds. The following table shows the total return and the number of funds for four categories of mutual funds. Click on the datafile logo to reference the data. DATA file Type of Fund Domestic Equity Number of Funds Total Return (%) 9191 4.65 International Equity 2621 18.15 Hybrid 1419 2900 11.36 6.75 Specialty Stock a. Using the number of funds as weights, compute the weighted average total return for these mutual funds. (to 2 decimals) % b. Is there any difficulty associated with using the "number of funds" as the weights in computing the weighted average total return in part (a)? Discuss. What else might be used for weights? The input in the box below will not be graded, but may be reviewed and considered by your instructor. c. Suppose you invested $10,000 in this group of mutual funds and diversified the investment by placing $2000 in Domestic Equity funds, $4000 in International Equity funds, $3000 in Specialty Stock…arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill