Simulates the tennis game
Program Plan:
- Import the header file.
- Define the “main” method.
- Call the “printIntro ()” method
- Call the “getInputs ()” method.
- Call the “simNMatches ()” method.
- Call the “printSummary ()” method.
- Define the “printIntro()” method.
- Print the intro statements.
- Define the “getInputs()” method.
- Get the player A possible for win from the user.
- Calculate the “probA” and “probB” values.
- Get how many games to simulate from the user.
- Define the “simNMatches()” method.
- Set the values
- Iterate “i” until it reaches “n” value
- Call the methods
- Check “matchA” is greater than “matchB”
- Increment the “winsA” value
- Otherwise, increment the “winsB” value.
- Return the values.
- Define the “simOneMatch ()” method
- Set the values
- Check the condition.
- Call the “simOneGame ()” method.
- Check “setA” is greater than “setB”
- Increment the “matchA” value
- Otherwise, increment the “matchB” value
- Return the results
- Define the “matchOver ()” method
- Check “a” or “b” is greater than 3
- Return true
-
- Otherwise, return false.
-
- Return true
- Check “a” or “b” is greater than 3
- Define the “simOneSet ()” method
- Call the method
- Set the values
- Check the condition.
- Check “scoreA” is greater than “scoreB”
- Increment the “setA” value
- Otherwise, increment the “setB” value
-
- Return the results
-
- Check “scoreA” is greater than “scoreB”
- Define the “setOver ()” method
- Check “a” or “b” is equal to 7
- Return true
-
- Check “a” or “b” is greater than or equal to 6
-
- Check “a-b” is greater than or equal to 2
- Return true
- Otherwise, return false
- Check “a-b” is greater than or equal to 2
- Otherwise, return false.
-
- Return true
- Check “a” or “b” is equal to 7
- Define the “simOneGame ()” method
- Set the values
- Check the condition
- Check “random ()” is less than “probA”
- Increment the “scoreA” value
-
- Otherwise, increment the “scoreB” value
- Return the results.
-
- Increment the “scoreA” value
- Check “random ()” is less than “probA”
- Define the “gameOver ()” method
- Check “a” or “b” is greater than or equal to 4
- Check “a-b” is greater than or equal to 2
- Return true
-
- Otherwise, return false
- Otherwise, return false.
-
- Return true
- Check “a-b” is greater than or equal to 2
- Check “a” or “b” is greater than or equal to 4
- Define the “printSummary ()” method
- Display the results.
- Call the main method.
The program is to simulate a game of tennis.
Explanation of Solution
Program:
#import the header file
from random import random
#definition of main method
def main():
#call the method
printIntro()
#call the method and store it in the variables
probA, probB, n = getInputs()
#call the method and store it in the variables
winsA, winsB = simNMatches(n, probA, probB)
#call the method
printSummary(winsA, winsB, n)
#definition of "printIntro" method
def printIntro():
#display the statements
print("This program simulates a series of tennis matches between player")
print('"A" and player "B". The abilities of each player are')
print("represented by percentage chance of winning a volley. The")
print("percentages add up to 100.")
print()
print("Game")
print("As in real tennis, each game is played through 4 points")
print("(Love, 15, 30, 40, game) where the player must win by two.")
print("Players can score on either serve.")
print()
print("Set")
print("A set is won when a player reaches 6 victorious games, and has a")
print("lead of two. If for example, sets reach 6-5, the players will play")
print("another round. If the score reaches 6-6, there will be a")
print("tiebreaking game.")
print()
print("Match")
print("A Match is won when a player reaches his/her 3rd victorious set.")
print("No winning by two, no tie-breaker, for the purposes of this simulation")
print()
#definition of "getInputs" method
def getInputs():
#get the player A wins a serve
probA = eval(input("What is the percent prob. player A wins a volley? "))
#calculate the values
probA = probA / 100
probB = 1 - probA
#get the input from the user
n = eval(input("How many games to simulate? "))
return probA, probB, n
#definition of "simNMatches" method
def simNMatches(n, probA, probB):
#set the values
winsA = winsB = 0
#iterate until "n" value
for i in range(n):
#call the method and store it in the variables
matchA, matchB = simOneMatch(probA, probB)
#check "matchA" is greater than "matchB"
if matchA > matchB:
#increment the value
winsA = winsA + 1
#otherwise
else:
#increment the value
winsB = winsB + 1
#return the results
return winsA, winsB
#definition of "simOneMatch" method
def simOneMatch(probA, probB):
#set the values
matchA = matchB = 0
#check the condition
while not matchOver(matchA, matchB):
#call the method and store it in the variables
setA, setB = simOneSet(probA, probB)
#check "setA" is greater than "setB"
if setA > setB:
#increment the value
matchA = matchA + 1
#otherwise
else:
#increment the value
matchB = matchB + 1
#return the results
return matchA, matchB
#definition of "matchOver" method
def matchOver(a, b):
#check "a" or "b" is greater than 3
if a > 3 or b > 3:
#return the result
return True
else:
#return the result
return False
#definition of "simOneSet" method
def simOneSet(probA, probB):
#call the method and store it in the variables
scoreA, scoreB = simOneGame(probA, probB)
#set the values
setA = setB = 0
#check the condition
while not setOver(setA, setB):
#check "scoreA" is greater than "scoreB"
if scoreA > scoreB:
#increment the value
setA = setA + 1
else:
#increment the value
setB = setB + 1
#return the results
return setA, setB
#definition of "setOver" method
def setOver(a, b):
#check "a" and "b" is equal to 7
if a == 7 or b == 7:
#return the result
return True
#check "a" or "b" is greater than or equal to 6
elif a >= 6 or b >= 6:
#check "a - b" is greater than or equal to 2
if abs(a-b) >=2:
#return the result
return True
else:
#return the result
return False
else:
#return the result
return False
#definition of "simOneGame" method
def simOneGame(probA, probB):
#set the values
scoreA = scoreB = 0
#check the condition
while not gameOver(scoreA, scoreB):
#check "random()" is less than "probA"
if random() < probA:
#increment the value
scoreA = scoreA + 1
else:
#increment the value
scoreB = scoreB + 1
#return the result
return scoreA, scoreB
#definition of "gameOver" method
def gameOver(a, b):
#check "a" or "b" is greater than or equal to 4
if a >= 4 or b >= 4:
#check "a - b" is greater than or equal to 2
if abs(a-b) >=2:
#return the result
return True
else:
#return the result
return False
else:
#return the result
return False
#definition of "printSummary" method
def printSummary(winsA, winsB, n):
#display the results
print("\nGames simulated: ", n)
print("Wins for A: {0} ({1:0.1%})".format(winsA, winsA/n))
print("Wins for B: {0} ({1:0.1%})".format(winsB, winsB/n))
#call the main method
if __name__ == '__main__': main()
Output:
This program simulates a series of tennis matches between player
"A" and player "B". The abilities of each player are
represented by percentage chance of winning a volley. The
percentages add up to 100.
Game
As in real tennis, each game is played through 4 points
(Love, 15, 30, 40, game) where the player must win by two.
Players can score on either serve.
Set
A set is won when a player reaches 6 victorious games, and has a
lead of two. If for example, sets reach 6-5, the players will play
another round. If the score reaches 6-6, there will be a
tiebreaking game.
Match
A Match is won when a player reaches his/her 3rd victorious set.
No winning by two, no tie-breaker, for the purposes of this simulation
What is the percent prob. player A wins a volley? 50
How many games to simulate? 10
Games simulated: 10
Wins for A: 7 (70.0%)
Wins for B: 3 (30.0%)
Want to see more full solutions like this?
Chapter 9 Solutions
Python Programming: An Introduction to Computer Science, 3rd Ed.
- Object-oriented programming and procedural programming languages each have their own advantages and disadvantages when it comes to usefulness.arrow_forwardCan the benefits of a simulation be realized without executing it on a computer? Explain.arrow_forwardComputer architecture and computer object-oriented design are not the same thing. There is a difference between the two.arrow_forward
- Object oriented programming vs. procedural programming — a thorough explanation of the difference between the two.arrow_forwardThe following are some cases when simulation models might be useful:arrow_forwardJAVA PROGRAMMING OBJECT-ORIENTED PROGRAMMINGCreate a model of a scene of your choosing by making use of the composite pattern. It may be a scene from a photograph, or it could be from a simulator, or it could be from a movie, or it could be from a videogame, etc.arrow_forward
- Object-Oriented Programming and Procedural Programming are compared and contrasted. What are the most important personality traits for a great programmer to possess?arrow_forwardObject-oriented programming and design patterns have a connection that has to be clarified.arrow_forwardComputer design vs. computer organization is the issue.arrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education