ORGANIC CHEMISTRY-PRINT COMPANION (LL)
ORGANIC CHEMISTRY-PRINT COMPANION (LL)
3rd Edition
ISBN: 9781119444251
Author: Klein
Publisher: WILEY
Question
Book Icon
Chapter 9, Problem 52PP

(a)

Interpretation Introduction

Interpretation:

The efficient synthetic route for the given target molecules and transformation should be identified.

The reagents used to accomplish the given efficient transformations should be determined.

Concept Introduction:

Halogenation: The addition of halogen atoms to a π- conjunction system. The several unsaturated organic compounds like, alkenes, alkynes and cyclohexenes that has one double bond is halogenated, the resulting molecules is completely saturated or halogenated.

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system. The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(b)

Interpretation Introduction

Interpretation:

The efficient synthetic route for the given target molecules and transformation should be identified.

The reagents used to accomplish the given efficient transformations should be determined.

Concept Introduction:

Halogenation: The addition of halogen atoms to a π- conjunction system. The several unsaturated organic compounds like, alkenes, alkynes and cyclohexenes that has one double bond is halogenated, the resulting molecules is completely saturated or halogenated.

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system. The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(c)

Interpretation Introduction

Interpretation:

The efficient synthetic route for the given target molecules and transformation should be identified.

The reagents used to accomplish the given efficient transformations should be determined.

Concept Introduction:

Halogenation: The addition of halogen atoms to a π- conjunction system. The several unsaturated organic compounds like, alkenes, alkynes and cyclohexenes that has one double bond is halogenated, the resulting molecules is completely saturated or halogenated.

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system. The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

(d)

Interpretation Introduction

Interpretation:

The efficient synthetic route for the given target molecules and transformation should be identified.

The reagents used to accomplish the given efficient transformations should be determined.

Concept Introduction:

Halogenation: The addition of halogen atoms to a π- conjunction system. The several unsaturated organic compounds like, alkenes, alkynes and cyclohexenes that has one double bond is halogenated, the resulting molecules is completely saturated or halogenated.

Soda amide: The strong base of NaNH2/NH3 will deprotonate alkynes, alcohols and other organic functional groups with acidic protons such as asters and ketones. It is also a very strong nucleophile. It is a strong base and excellent nucleophile. It’s used deprotonated of weak acids and also for elimination reaction.

Markovnikov’s Rule: The unsymmetrical alkene in a chemical compound reacts with hydrogen halide in a way, where halide ions attacks and bond to the more substitution position of carbon-carbon double bond.

Hydrogen reduction reaction: The alkenes or alkynes can be reduced to alkanes with H2 in the presence of metal catalyst (Pd) . The new C-H σ bonds are formed simultaneously from H atoms absorbed into the metal surface.

Birch reduction: The conjugated alkynes and benzenes in the presence of sodium metal in liquid ammonia and alkyne produced a non-conjugated diene system. The alkyne involves sodium (Na)/NH3 . This end up reducing to alkyne to give the trans (E) alkene.

Hydrogenation:  The hydrogenation is a reduction reaction which results in an addition of hydrogen. Several organic compounds (alkenes, alkynes) is hydrogenated, it becomes more saturated.

Acid Catalyzed Hydration Reaction: The reaction involves breaking of phi bonds between carbon-carbon multiple bonds and addition of alcohol to more substituted position of carbon in the molecule.

Blurred answer
Students have asked these similar questions
b) Certain cyclic compounds are known to be conformationally similar to carbohydrates, although they are not themselves carbohydrates. One example is Compound C shown below, which could be imagined as adopting four possible conformations. In reality, however, only one of these is particularly stable. Circle the conformation you expect to be the most stable, and provide an explanation to justify your choice. For your explanation to be both convincing and correct, it must contain not only words, but also "cartoon" orbital drawings contrasting the four structures. Compound C Possible conformations (circle one): Дет
Lab Data The distance entered is out of the expected range. Check your calculations and conversion factors. Verify your distance. Will the gas cloud be closer to the cotton ball with HCI or NH3? Did you report your data to the correct number of significant figures? - X Experimental Set-up HCI-NH3 NH3-HCI Longer Tube Time elapsed (min) 5 (exact) 5 (exact) Distance between cotton balls (cm) 24.30 24.40 Distance to cloud (cm) 9.70 14.16 Distance traveled by HCI (cm) 9.70 9.80 Distance traveled by NH3 (cm) 14.60 14.50 Diffusion rate of HCI (cm/hr) 116 118 Diffusion rate of NH3 (cm/hr) 175.2 175.2 How to measure distance and calculate rate
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically: 1:1 (one mole of EDTA per mole of metal ion) 2:1 (two moles of EDTA per mole of metal ion) 1:2 (one mole of EDTA per two moles of metal ion) None of the above

Chapter 9 Solutions

ORGANIC CHEMISTRY-PRINT COMPANION (LL)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY