The atomic radius of calcium in its cubic close packing structure is given and its density has to be determined. Concept introduction: In packing of atoms in a crystal structure, the atoms are imagined as spheres. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell. In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom. Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is, 8 × 1 8 atoms in corners + 6 × 1 2 atoms in faces = 1 + 3 = 4 atoms The edge length of one unit cell is given by a = 2R 2 where a = edge length of unit cell R = radius of atom
The atomic radius of calcium in its cubic close packing structure is given and its density has to be determined. Concept introduction: In packing of atoms in a crystal structure, the atoms are imagined as spheres. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell. In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom. Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is, 8 × 1 8 atoms in corners + 6 × 1 2 atoms in faces = 1 + 3 = 4 atoms The edge length of one unit cell is given by a = 2R 2 where a = edge length of unit cell R = radius of atom
Solution Summary: The author explains that the atomic radius of calcium in its cubic close packing structure is given and its density has to be determined.
The atomic radius of calcium in its cubic close packing structure is given and its density has to be determined.
Concept introduction:
In packing of atoms in a crystal structure, the atoms are imagined as spheres. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell.
In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom.
Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is,
8×18atomsincorners+6×12atomsinfaces=1+3=4atoms The edge length of one unit cell is given bya=2R2where a=edge length of unit cellR=radiusofatom
Extra for Experts: Your Future in Chemistry.
As you now know, there are countless jobs that involve chemistry!
Research a chemistry profession that interests you. In your answer, discuss which aspects of the job most appeal to you.
MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10
Consider the following reaction:
CH3OH(g)
CO(g) + 2H2(g)
(Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.)
Part A
Calculate AG for this reaction at 25 °C under the following conditions:
PCH₂OH
Pco
PH2
0.815 atm
=
0.140 atm
0.170 atm
Express your answer in kilojoules to three significant figures.
Ο ΑΣΦ
AG = -150
Submit
Previous Answers Request Answer
□?
kJ
× Incorrect; Try Again; 2 attempts remaining
Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship:
AGrxn = AGrxn + RTInQ,
AGxn+RTInQ,
where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a
is the reaction quotient.
Provide Feedback
Next >
Identify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Unit Cell Chemistry Simple Cubic, Body Centered Cubic, Face Centered Cubic Crystal Lattice Structu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=HCWwRh5CXYU;License: Standard YouTube License, CC-BY