Concept explainers
What is the minimum amount of 6.0 M H2SO4 necessary to produce 25.0 g of H2(g) according to the reaction between aluminum and sulfuric acid?
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
- What is the molarity of a solution of sodium hydrogen sulfate that is prepared by dissolving 9.21 g NaHSO4 in enough water to form 2.00-L solution? What is the molarity of each ion in the solution?arrow_forwardPhosphoric acid is prepared by dissolving phosphorus(V) oxide, P4O10, in water. What is the balanced equation for this reaction? How many grams of P4O10 are required to make 1.19 L of aqueous solution containing 5.50% phosphoric acid by mass? The density of the solution is 1.025 g/mL.arrow_forwardWhat is the molarity of a solution of strontium chloride that is prepared by dissolving 4.11 g SrCl2 in enough water to form 1.00-L solution? What is the molarity of each ion in the solution?arrow_forward
- A 1.345-g sample of a compound of barium and oxygen was dissolved in hydrochloric acid to give a solution of barium ion, which was then precipitated with an excess of potassium chromate to give 2.012 g of barium chromate, BaCrO4. What is the formula of the compound?arrow_forwardDetermine the volume of sulfuric acid solution needed to prepare 37.4 g of aluminum sulfate, Al2(SO4)3, by the reaction 2Al(s)+3H2SO4(aq)Al2(SO4)3(aq)+3H2(g) The sulfuric acid solution, whose density is 1.104 g/mL, contains 15.0% H2SO4 by mass.arrow_forwardYou are given a solid mixture of NaNO2 and NaCl and are asked to analyze it for the amount of NaNO2 present. To do so, you allow the mixture to react with sulfamic acid, HSO3NH2, in water according to the equation NaNO2(aq) + HSO3NH2(aq) NaHSO4(aq) + H2O() + N2(g) What is the weight percentage of NaNO2 in 1.232 g of the solid mixture if reaction with sulfa-mic acid produces 295 mL of dry N2 gas with a pressure of 713 mm Hg at 21.0 C?arrow_forward
- A soluble iodide was dissolved in water. Then an excess of silver nitrate, AgNO3, was added to precipitate all of the iodide ion as silver iodide, AgI. If 1.545 g of the soluble iodide gave 2.185 g of silver iodide, how many grams of iodine are in the sample of soluble iodide? What is the mass percentage of iodine, I, in the compound?arrow_forwardPotassium permanganate (KMnO4) solutions are used for the determination of Fe2+ in samples of unknown concentration. As a laboratory assistant, you are supposed to prepare 500 mL of a 0.1000 M KMnO4 solution. What mass of KMnO4, in grams, do you need?arrow_forwardWrite a balanced equation for the reaction of hydroiodic acid, HI, with calcium hydroxide, Ca(OH)2. Then, write the balanced complete ionic equation and the net ionic equation for this neutralization reaction.arrow_forward
- Vitamin C, ascorbic acid (C6HgO6)(molar mass 176.1 g/mol), is a reducing agent. One way to determine the ascorbic acid content of a sample is to mix the acid with an excess of iodine, C6HgO6(aq) + I2(aq) + H2O(l) C6HgO6(aq) + 2 H3O+(aq) + 2 I(aq) and then titrate the iodine that did not react with the ascorbic acid with sodium thiosulfate. The balanced, net ionic equation for the reaction occurring in this titration is I2(aq) + 2 S2O32(aq)2 I(aq) + S4O62(aq) Suppose 50.00 mL of 0.0520 M I2 was added to the sample containing ascorbic acid. After the ascorbic acid/I2, reaction was complete, the I2 not used in this reaction required 20.30 mL of 0.196 M Na2S2O3 for titration to the equivalence point. Calculate the mass of ascorbic acid in the unknown sample.arrow_forward1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardTwenty-five mL of a 0.388 M solution of Na2SO4 is mixed with 35.3 mL of 0.229 M Na2SO4. What is the molarity of the resulting solution? Assume that the volumes are additive.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning