Concept explainers
A particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by
- a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)?
- b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)?
- c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)?
- d. Is the force F conservative or nonconservative? Explain.
FIGURE P9.30
In each case, the work is found using the integral of
(a) The work done along path 1, we first need to integrate along
Performing the dot products, we get
Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy.
(b) The work done along path 2 is along
Performing the dot product, we get:
Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx.
(c) To find the work along the third path, we first write the expression for the work integral.
At first glance, this appears quite simple, but we can’t integrate
Now, use equation (2) in (1) to express each integral in terms of only one variable.
We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal).
Insert the value of the tangent and solve the integrals.
(d) Since the work done is not “path-independent”, this is
Figure P9.30ANS
(a)
The work done on the particle by the force
Answer to Problem 30PQ
The work done on the particle by the force
Explanation of Solution
The path 1 followed by the particle is given in Figure P9.30. Given that the coordinate of the final position of the particle is
Write the expression for the work done by a force.
Here,
The path 1 of the particle consist of two parts. Motion from
Use the force vector along with the limits of integration and perform the integration (represent the work done along path 1 as
Perform the dot product to reduce the integral (II).
Along the first part of the path 1,
Conclusion:
Therefore, the work done on the particle by the force
(b)
The work done on the particle by the force
Answer to Problem 30PQ
The work done on the particle by the force
Explanation of Solution
The path 2 followed by the particle is given in Figure P9.30. Given that the coordinate of the final position of the particle is
Equation (I) gives the expression for the work done by a force.
The path 2 of the particle consist of two parts. Motion from
Use the force vector along with the limits of integration and perform the integration (represent the work done along path 2 as
Perform the dot product to reduce the integral (IV).
Along the first part of the path 2,
Conclusion:
Therefore, the work done on the particle by the force
(c)
The work done on the particle by the force
Answer to Problem 30PQ
The work done on the particle by the force
Explanation of Solution
The path 3 followed by the particle is given in Figure P9.30. Given that the coordinate of the final position of the particle is
Equation (I) gives the expression for the work done by a force.
Write equation (I) in terms of
Use the
The path 3 of the particle starts from
Here, both
Write the expression relating
Solve equation (IX) for
Solve equation (IX) for
Use equation (X) and (XI) in (VIII).
Compute
Use equation (XIII) in (XII) and perform the integral.
Conclusion:
Therefore, the work done on the particle by the force
(d)
Whether the force
Answer to Problem 30PQ
The force
Explanation of Solution
From part (a), (b) and (c) it is found that the work done by the force
Conclusion:
Therefore, the force
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- c = ad Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction N/C ° counterclockwise from the +x-axis 9a % 9 9barrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.275 How does the electric field relate to the force? How do you calculate the net force? Narrow_forward
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between 91 system of all three beads is zero. E field lines 91 92 93 X What charge does each bead carry? 91 = 92 = ?2.9 0 μC × What is the net charge of the system? What charges have to be equal? μC 93 2.9 με and 93. The sum of the charge on 91 and 92 is 91 +92 = -2.9 μC, and the net charge of thearrow_forwardAn electron has an initial speed of 5.26 x 100 m/s in a uniform 5.73 x 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide × What is the direction of the force on the electron? How does it compare to the direction of the electric field, considering the sign of the electron's charge? (b) How far does the electron travel before coming to rest? 0.0781 × What kinematic equation is relevant here? How do you calculate the force due to the electric field? m (c) How long does it take the electron to come to rest? 5.27e8 What is the final velocity of the electron? s (d) What is the electron's speed when it returns to its starting point? 5.26e6 m/sarrow_forward(a) What magnitude point charge creates a 90,000 N/C electric field at a distance of 0.235 m? 5.53e-7 C (b) How large is the field at 22.2 m? 9e4 Using the equation for the electric field due to a point charge, and knowing the charge from part (a), can you solve for the field? N/Carrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forwardNo chatgpt pls will upvotearrow_forwardTaking a Hike A hiker begins a trip by first walking 21.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 46.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. y (km) Can N W-DE 45.0° 60.0° Tent Tower B x (km) ☹ (a) Determine the components of the hiker's displacement for each day. SOLUTION Conceptualize We conceptualize the problem by drawing a sketch as in the figure. If we denote the displacement vectors on the first and second days by A and B, respectively, and use the ---Select-- as the origin of coordinates, we obtain the vectors shown in the figure. The sketch allows us to estimate the resultant vector as shown. Categorize Drawing the resultant R, we can now categorize this problem as one we've solved before: --Select-- of two vectors. You should now have a hint of the power of categorization in that many new problems are very similar to problems we have already solved if we are…arrow_forward
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College