Fundamentals Of Thermal-fluid Sciences In Si Units
Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 9, Problem 172RQ

a)

To determine

The maximum temperature and pressure during the cycle.

a)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Draw the Pν for an ideal Otto cycle as shown in Figure 1.

Fundamentals Of Thermal-fluid Sciences In Si Units, Chapter 9, Problem 172RQ

Calculate the clearance volume of one cylinder.

  r=Vc+Vd/4Vc11=Vc+1.8L4Vc11=Vc+1.8L(1m31000L)4VcVc=V2=0.000045m3

Calculate the volume at state 1.

  V1=Vc+Vd4=0.000045m3+1.8L4=0.000045m3+1.8L4(1m31000L)=0.000495m3

Calculate the mass of the air.

  P1V1=mRT1m=P1V1RT1=90kPa×0.000495m30.287kPam3/kgK×50°C=90kPa×0.000495m30.287kPam3/kgK×(50+273)K=0.0004805kg

The properties at during process 1-2 are as follows:

  T1=50°C=323Ku1=230.88kJ/kgT1=50°C=323KP1=90kPa}s1=5.8100kJ/kgK

  v1=V1m=0.000495m30.0004805kg=1.0302m3/kgV2=Vc=0.000045m3v2=V2m=0.000045m30.0004805kg=0.09364m3/kg

  s2=s1=5.8100kJ/kg.Kv2=0.09364m3/kg}T2=807.3KT2=807.3Ku2=598.33kJ/kgP2=P1V1V2T2T1P2=(90kPa)(0.000495m30.000045m3)(807.3K323K)P2=2474kPa

During process 2-3:

  Qin=m(u3u2)1.5kJ=(0.0004805kg)(u3598.33)kJ/kgu3=3719.8kJ/kg

  u2=598.33kJ/kgT3=4037KP3=P2(T3T2)=(2474kPa)(4037K807.3K)P3=12,375kPaT3=4037KP3=12,375kPa}s3=7.3218kJ/kgK

Thus, the maximum temperature and pressure during the cycle are 4037K and 12375 kPa respectively.

b)

To determine

The net work per cycle per cylinder and the thermal efficiency of the cycle.

b)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

During process 3-4:

  s4=s3=7.3218kJ/kg.Kv4=v1=1.0302m3/kg}{T4=2028Ku4=1703.6kJ/kg

  P4=P3V3V4T4T3=(12,375kPa)(111)(2028K4037K)=565kPa

During process 4-1:

  Qout=m(u4u1)=(0.0004805kg)(1703.6230.88)kJ/kg=0.7077kJ

Calculate the net power output Wnet.

  Wnet=QinQoutWnet=1.5kJ0.7077kJ=0.792kJ

Thus, the net power output is 0.792kJ.

Calculate the thermal efficiency of the cycle (ηth).

  ηth=WnetQin=0.7921.5=0.528

Thus, the thermal efficiency is 0.528.

c)

To determine

The mean effective pressure of the cycle.

c)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Calculate the mean effective pressure for an ideal Otto cycle (MEP).

  MEP=Wnetv1v2=0.792kJ0.000495m30.000045m3=1761kPa

Thus, the mean effective pressure of the cycle is 1761kPa.

d)

To determine

The power output for an engine speed of 3000 rpm.

d)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Calculate the power produced by the engine (W˙net).

  W˙net=(ncyl×Wnet)n˙nrev=(4cylinder×0.792kJ/cylinder-cycle)3000rev/min2rev/cycle=(4cylinder×0.792kJ/cylinder-cycle)3000rev/min(1min60s)2rev/cycle=79.2kW

Thus, the power output for an engine speed of 3000 rpm is 79.2kW.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
It is decided to install several single-jet Pelton wheels to produce a total power of 18 MW. The available head is 246 m. The wheel rotational speed is 650 rpm and the speed ratio (❤) = 0.46. The diameter of the nozzle (jet) is limited to be 0.167 m with a Cv of 0.95. The efficiency of each turbine is 87%. Determine: (1) The number of Pelton wheels to be used, and (2) The bucket angle.
Please show All work and fill it in thermodynamics
Quick solution required. My request, Don't use Ai. Mechanical engineering

Chapter 9 Solutions

Fundamentals Of Thermal-fluid Sciences In Si Units

Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - Prob. 53PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Prob. 67PCh. 9 - A simple Brayton cycle using air as the working...Ch. 9 - Prob. 70PCh. 9 - Consider a simple Brayton cycle using air as the...Ch. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - A gas-turbine power plant operates on a simple...Ch. 9 - Prob. 77PCh. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Refrigerant-134a is used as the working fluid in a...Ch. 9 - Prob. 109PCh. 9 - A simple ideal Rankine cycle with water as the...Ch. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - Prob. 123PCh. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - Prob. 129PCh. 9 - Prob. 130PCh. 9 - Prob. 131PCh. 9 - Prob. 132PCh. 9 - Why is the reversed Carnot cycle executed within...Ch. 9 - Prob. 134PCh. 9 - Prob. 135PCh. 9 - Refrigerant-134a enters the condenser of a...Ch. 9 - Prob. 137PCh. 9 - Prob. 138PCh. 9 - Prob. 139PCh. 9 - Prob. 140PCh. 9 - Prob. 141PCh. 9 - Prob. 142PCh. 9 - Prob. 143PCh. 9 - Prob. 144PCh. 9 - Prob. 145PCh. 9 - Prob. 146PCh. 9 - Prob. 148PCh. 9 - Prob. 149PCh. 9 - A commercial refrigerator with refrigerant-134a as...Ch. 9 - Prob. 151PCh. 9 - Prob. 153PCh. 9 - Prob. 154PCh. 9 - Prob. 155PCh. 9 - Prob. 156PCh. 9 - Prob. 157PCh. 9 - Prob. 158PCh. 9 - Prob. 159PCh. 9 - Refrigerant-134a enters the condenser of a...Ch. 9 - Prob. 161PCh. 9 - Prob. 162PCh. 9 - Prob. 164RQCh. 9 - Prob. 165RQCh. 9 - Prob. 166RQCh. 9 - Prob. 167RQCh. 9 - Prob. 168RQCh. 9 - A Brayton cycle with a pressure ratio of 12...Ch. 9 - Prob. 170RQCh. 9 - Prob. 171RQCh. 9 - Prob. 172RQCh. 9 - Prob. 173RQCh. 9 - Prob. 175RQCh. 9 - Prob. 176RQCh. 9 - Prob. 177RQCh. 9 - Prob. 178RQCh. 9 - Prob. 179RQCh. 9 - Prob. 180RQCh. 9 - Prob. 181RQCh. 9 - Prob. 182RQCh. 9 - Prob. 183RQCh. 9 - Prob. 184RQCh. 9 - Prob. 185RQCh. 9 - Prob. 186RQCh. 9 - A large refrigeration plant is to be maintained at...Ch. 9 - An air conditioner with refrigerant-134a as the...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY