Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 14P
Four railroad cars, each of mass 2.50 × 104 kg, are coupled together and coasting along horizontal tracks at speed vi toward the south. A very strong but foolish movie actor, riding on the second car, uncouples the front car and gives it a big push, increasing its speed to 4.00 m/s southward. The remaining three cars continue moving south, now at 2.0 m/s. (a) Find the initial speed of the four cars. (b) By how much did the potential energy within the body of the actor change? (c) State the relationship between the process described here and the process in Problem 13.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You can perform a popular trick by dropping any peso bill (Ex. 500 peso bill )lengthwise
through the thumb and forefinger of a classmate. Tell your classmate to grab the peso bill as
fast as possible and he/she can keep the money if he/she catches it. The length of the peso
bill is 15.7 cm and the average human reaction time is about 0.20 s. Will your classmate catch
the bill and keep the money?
A truck (M = 2500kg) collides with a car (m = 1000kg) at a 4-way intersection. Fortunately
nobody gets hurt. Suppose the car is going north at 20m/s ( about 45mph) and the truck is
coming from the east at 10m/s ( about 22mph). The car and truck stick together after the
%3D
collision.
(a) Find the speed and direction of the car and truck immediately after the collision.
(b) Approximately how much energy went into the deformation of the metal that caused the two
vehicles to stick together?
(c) What assumptions did you make?
The
During a head on collision, the passengers in the front seat of a car accelerate from 13.3m/s to rest in 0.10s. The driver of the car held out their arm to stop their 25kg child from smashing into the dashboard. What force in pounds (1N = 0.225lbs) is needed to keep the child from moving?
Chapter 9 Solutions
Physics for Scientists and Engineers
Ch. 9.1 - Two objects have equal kinetic energies. How do...Ch. 9.1 - Your physical education teacher throws a baseball...Ch. 9.3 - Two objects are at rest on a frictionless surface....Ch. 9.3 - Rank an automobile dashboard, seat belt, and air...Ch. 9.4 - In a perfectly inelastic one-dimensional collision...Ch. 9.4 - A table-tennis ball is thrown at a stationary...Ch. 9.6 - A baseball bat of uniform density is cut at the...Ch. 9.7 - A cruise ship is moving at constant speed through...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - A 3.00-kg particle has a velocity of...
Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - When you jump straight up as high as you can, what...Ch. 9 - A glider of mass m is free to slide along a...Ch. 9 - You and your brother argue often about how to...Ch. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Four railroad cars, each of mass 2.50 104 kg, are...Ch. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - You have been hired as an expert witness by an...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - Consider a system of two particles in the xy...Ch. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - You have been hired as an expert witness in an...Ch. 9 - Prob. 30PCh. 9 - A 60.0-kg person bends his knees and then jumps...Ch. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - A rocket for use in deep space is to be capable of...Ch. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - An amateur skater of mass M is trapped in the...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Pursued by ferocious wolves, you are in a sleigh...Ch. 9 - Review. A student performs a ballistic pendulum...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - Prob. 48APCh. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 50APCh. 9 - Review. There are (one can say) three coequal...Ch. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - Two particles with masses m and 3m are moving...Ch. 9 - On a horizontal air track, a glider of mass m...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You're driving along at 25m/s with your aunt's valuable antiques in the back of your pickup truck when suddenly you see a giant hole in the road 55 m ahead of you. Fortunately, your foot is right beside the brake and your reaction time is zero! If the coefficients of friction are μs =0.6 and uk =0.3, how much time does it take you to stop if you don't want the antiques to slide and be damaged?arrow_forwardWhile driving to work one day, I was holding my coffee mug in my left hand while changing the radio station with my right hand. Then my cell phone rang, so I placed the mug on the flat part of my dashboard. Then, believe it or not, a deer ran out of the woods and onto the road right in front of me. Fortunately, my reaction time was zero, and I was able to stop from a speed of 17 m/s in a mere 50 m, just barely avoiding the deer, without the coffee mug sliding. The mug (with coffee) had a mass of 550 g, and the mass of the deer was 150 kg. Part A What is the minimum possible value of the coefficient of static friction between the mug and the dashboard? Hg =arrow_forwardThe block of mass m = 2 kg is released from the rest on the incline. If 0 = 15°, what is the velocity of the block 2 seconds after release? Ms = 0.3, k = 0.20 1.288 m/s 3.084 m/s 2.511 m/s m 0 Өarrow_forward
- Dae-hyun, a man of mass 72 kg, steps from a table 92 cm to the floor below. Assume that his velocity is zero as he leaves the table. As he lands, he bends his knees so that he decelerates to a final speed of zero over a distance of 35 cm. (a) What is Dae-hyun's speed just as he starts to hit the floor? Type your answer here (b) As he decelerates, what is the magnitude of the force exerted on him by the floor? Assume constant acceleration. x10 to the power of Type your answer here Type your answer here (You may need to involve some kinematics to solve this one!) m/s N on Dae-hyun.arrow_forwardA space probe of mass 5.00 x 104 kg is traveling at 1.10 x 104 m/s through deep space. No forces act on the probe except that generated by its own engine. No forces act on the probe except that generated by its own engine. The engine exerts a constant external force of 4.00 x 105 N, directed parallel to the displacement, which is 2.50 x 106 m. Determine the final velocity of the probe.arrow_forwardTwo fan carts are on parallel inclined tracks are facing opposite directions. At t=0, the carts are 2.88 m apart with the fans on and they are both given a sharp push toward each other against the direction the fans are pushing them. Cart A begins (after the push) with a speed of 1.35 m/s to the right and has an acceleration of 0.44 m/s? to the left. Cart B begins (after the push) with a speed of 1.05 m/s to the left and has an acceleration to the right of 0.52 m/s?. (Hint: Keep your positive and negative directions consistent for both carts.) A a) At what two times do the two cars pass each other? b) What are the two positions at which the cars pass each other? c) What is the velocity of each car when they pass each other? d) Graph the motion of each on the position vs. time graphs and velocity vs. time graphs on the next page. time (s) time (s) (w) uojiisod velocity (m/ş)arrow_forward
- Io, a satellite of Jupiter, is the most volcanically active moon or planet in the solar system. It has volcanoes that send plumes of matter over 500 km high. Due to the satellite's small mass, the acceleration due to gravity on Io is only 1.81 m/s2and Io has no appreciable atmosphere. Assume that there is no variation in gravity over the distance traveled. a)What must be the speed of material just as it leaves the volcano to reach an altitude of 380 km? b)If the gravitational potential energy is zero at the surface, what is the potential energy for a 33 kg fragment at its maximum height (500 km) on Io? c)How much would this gravitational potential energy be if it were at the same height (500 km) above earth?arrow_forwardA uranium nucleus (mass 238 units) at rest decays into helium nucleus (mass 4.0 units) and thorium nucleus (mass 234 units). If the speed of the helium nucleus is 6.0 x 10^5 m/s, what is the speed of the thorium nucleus?arrow_forwardA ball of mass m is shot straight up into the air with an initial speed vj. (a) What is the maximum height reached by the ball (in terms of vj and g)? (b) A second ball is dropped from rest from a height, h, directly above the first ball, and is released at the same time that the first ball is shot upwards. At what height will the two balls collide? Provide an expression in terms of h, Vị, and g. (c) From what height should the second ball be dropped from so that the two balls collide when the first ball is at its maximum height?arrow_forward
- A tired cyclist on a bicycle (102.0 kg combined) starts with an initial velocity of 15.0 m/s at the bottom of a hill and coasts up the hill. He comes to a stop just at the top of the hill. What is the maximum height of the hill?arrow_forwardAn aging coyote (m = 42.1 kg) cannot run fast enough to catch a roadrunner (m = 16.3 kg). He purchases a set of jet-powered roller skates, which proved a constant horizontal acceleration of 15.2 m/s2. The coyote starts at rest 73.2 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff. Hint: their initial positions at the top of the cliff are the same. a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. b. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight, so his acceleration while he is in the air is (15.2i – 9.80j) m/s2. The cliff is 127 m above the flat floor of the desert. Determine how far from the base of the vertical cliff the coyote lands. c. Determine the components of the coyote’s impulse upon impact.arrow_forwardA 15 g bullet is shot vertically into an 2.10 kg block and does not exit. The block lifts upward 8.0 mm (see the figure). How fast was the the bullet going before it collided with the block? Ignore the effects of air resistance. Give your answer in m/s to three significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY