Find the maximum positive shear and bending moment at point B.

Answer to Problem 13P
The maximum positive shear at point B is
The maximum positive bending moment at point B is
Explanation of Solution
Calculation:
Apply a 1 kN unit moving load at a distance of x from left end A.
Sketch the free body diagram of beam as shown in Figure 1.
Refer Figure 1.
Find the equation of support reaction
Take moment about point C.
Consider moment equilibrium at point C.
Consider clockwise moment as positive and anticlockwise moment as negative.
Sum of moment at point C is zero.
Find the equation of support reaction
Apply vertical equilibrium equation of forces.
Consider upward force as positive
Substitute
Influence line for shear at point B.
Find the equation of shear force at B of portion AB
Sketch the free body diagram of the section AB as shown in Figure 2.
Refer Figure 2.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Find the equation of shear force at B of portion BC
Sketch the free body diagram of the section BC as shown in Figure 3.
Refer Figure 3.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Thus, the equations of the influence line for
Find the value of influence line ordinate of shear force at various points of x using the Equations (3) and (4) and summarize the value as in Table 1.
x | |
0 | 0 |
16 | 0 |
Draw the influence lines for the shear force at point B using Table 1 as shown in Figure 4.
Refer Figure 4.
Find the slope
Here,
Substitute 10 m for
Find the slope
Here,
Substitute 5 m for
Sketch the loading position as shown in Figure 5.
Find the maximum positive shear force at B.
Sketch the loading position on the beam when the load 1 placed at just right of B as shown in Figure 6.
Refer Figure 6.
Find the shear force at B when the load 1 placed at just right of B.
Substitute 5 m for
Sketch the loading position on the beam when the load 2 placed at just right of B as shown in Figure 7.
Refer Figure 7.
Find the shear force at B when the load 2 placed at just right of B.
Substitute 10 m for
Sketch the loading position on the beam when the load 3 placed at just right of B as shown in Figure 8.
Refer Figure 8.
Find the shear force at B when the load 3 placed at just right of B.
Substitute 10 m for
Maximum positive shear force at B as follows.
The maximum positive shear at B is the maximum of
Therefore, the maximum positive shear at point B is
Influence line for moment at B.
Refer Figure 2.
Consider clockwise moment as positive and anticlockwise moment as negative.
Find the equation of moment at B of portion AB
Substitute
Refer Figure 3.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation of moment at B of portion BC
Substitute
Thus, the equations of the influence line for
Find the value of influence line ordinate of moment at various points of x using the Equations (5) and (6) and summarize the value as in Table 2.
x | |
0 | 0 |
10 | |
15 | 0 |
Draw the influence lines for the moment at point B using Table 2 as shown in Figure 9.
Refer Figure 9.
Find the slope
Here,
Substitute 10 m for
Find the slope
Here,
Substitute 5 m for
Find the maximum positive bending moment at B.
Refer Figure 6.
Find the bending moment at B when the load 1 placed at just right of B.
Substitute 5 m for
Refer Figure 7.
Find the bending moment at B when the load 2 placed at just right of B.
Substitute 10 m for
Refer Figure 8.
Find the bending moment at B when the load 3 placed at just right of B.
Substitute 10 m for
Maximum positive bending moment at B. as follows.
The maximum positive bending moment at B is the maximum of
Therefore, the maximum positive bending moment at point B is
Want to see more full solutions like this?
Chapter 9 Solutions
Structural Analysis, SI Edition
- Please solve the highlighted question.arrow_forward1. Design a PVC sanitary sewer collection system for the Village of Waffle (Figure P-17-24 B, shown below) by preparing a sewer design table similar to that shown in Example 19-2 and a profile drawing similar to Figure 19-13b B. You only need to show the calculations for the pipes running along Bacon Road and Eggs Road, starting at point F and ending at Point B in the figure below. Your design should comply with the requirements specified in Chapter 30 of the 10 States Standards for Wastewater. Use the following assumptions: 0 о о Average daily flow rate is the same as average daily water demand, 9.2 m³/hr Peaking factor for peak dry weather flow is 6.2 Peak wet weather flow is equal to the peak dry weather flow plus an assumption for infiltration and inflow at 40 L/d-mm-km of pipe DODO on Ro 450 m 28 m D. 150 m Apartments D 400 m D 200 m B 250 m 0 Dogs Road ROOD625 m -120 m Syrup River 120 m 100-Year flood Point Elevation Tank 137.0 m A 130.0 m B 122.0 m C 122.3 m D 122.6 m A D 300 m…arrow_forwardNeed helparrow_forward
- 2. Design a circular clarifier for a flow rate of 34,560 m³/d. Use a design overflow rate of 30 m³/d-m². Assume the clarifier has a center feed and a side water depth of 4.3 m. Use a feedwell detention time of 20 min. Provide the following information to support your design: • Diameter of the clarifier • Diameter and depth of the feedwell . Check the flow velocity across the sludge zone • Calculate the weir loading ratearrow_forwardName: Course: Mechanics of Deformable Bodies Investigation and Design of Axially Loaded Structural Members Date: Term: A. Objective 1. To be able to determine internal axial load on structural members 2. To be able to design structural members with axial internal reactions B. General Instruction 1. Write your solution legibly in separate sheets of clean bond paper. 2. Box your final answer in your solution. C. Situation A truss structure is an assembly of straight structural members that form triangular panels. The assembly of triangular panels makes the truss establish a rigid configuration. In a truss structure, connections are theoretically assumed to act as smooth pin; therefore, it does not resist any moment or bending. Due to this magnificent behavior, truss members only resist axial forces in the design phase that could either be compressive or tensile. Presented in the figure is a truss that is a component of a roof framing system to be constructed at the University Lucena City…arrow_forward1- A two-lane highway (two 3.6 m lanes) has a posted speed limit of 100 km/h and, on one section, has both horizontal and vertical curves, as shown in the figure below. A recent daytime crash (driver traveling westbound and striking a stationary roadway object) resulted in a fatality and a lawsuit alleging that the 100 km/h posted speed limit is an unsafe speed for the curves in question and was a major cause of the crash. Evaluate and comment on the roadway design (after Mannering and Washburn). Plan view (horizontal alignment) PC Station 4+90 Profile view (vertical alignment) e = 8.0% 100 m Sight obstruction 50° G₁ = -2.0% PVC Station 4+30 T PVI PVT Station 6+80 PT N Station 10+00 G₂ = +4.0%arrow_forward
- Existing Filter Design Parameters at 22.5 MGD: A) # of Filters: 5 B) #Bays per Filter: 1 C) Bay Surface Dimensions (L X W X D): (40.5 ft. X 13 ft. X 11.5 ft.) D) Surface Area per Filter: 526.5 ft^2 E) Total Filtration Area: 2,633 ft^2 F) Hydraulic Loading Rate: 6 gpm/sf (w/ all filters in service) G) Filtration Capacity at HLR: 22.7 MGD H) Filter Media: 1) Anthracite: 20 in. depth, 1.00 mm Effective Size 2) Sand: 9 in. depth, 0.50 mm Effective Size 1) L/d Ratio (depth of media/effective size): 965 J) Backwash Pumps: 15 MGD (two pumps) K) Backwash water for the filters is provided from the high service pump station through a 24-inch backwash water L) Air Wash Blowers: 1) Number: 2 Hoffman Centrifugal Model 38406A, 125 hp 2) Capacity: 3,100 scfm (standard cubic ft/^2) 3) Air Scour Rate: 5.90 scfm/ft^2 Deliverables: 1) Determine if the existing filtration system is sufficient to accommodate the projected future capacity. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for…arrow_forwardPart 1: True or False. Indicate whether the following statements are True (T) or False (F) by encircling the letter that corresponds to your answer. 1. (T/F) Residual soils are formed by the weathering of rocks in place. 2. (T/F) The Standard Penetration Test (SPT) provides a disturbed soil sample. 3. (T/F) The groundwater table has no effect on the interpretation of soil exploration data. 4. (T/F) Geophysical methods are always more accurate than direct soil sampling methods. 5. (T/F) The N-value in the SPT is the number of blows required to drive the sampler the first 150 mm. Part 2: Multiple choice. Choose the best answer for each question. 1. Which of the following is NOT a transported soil deposit? a) Alluvial b) Glacial c) Residual d) Aeolian 2. What is the primary purpose of subsurface exploration? a) To determine the depth of bedrock b) To identify soil types and their properties 3. Which test provides a continuous profile of soil a) Standard Penetration Test (SPT) b) Cone…arrow_forwardDetermin the shear and moment in teh beam as a function of x where 2m<x<4m.arrow_forward
- Encuentra las fuerzas internas de todos los elementos en las siguientes armaduras por el método de nodosarrow_forwardGiven a side slope of 2:1, a road width of 10 m and cross-sectional area of 36.4 sq m, for the following cross-sectional notes: 9.8..........0...........x2 y1..........y..........1.2 Determine the value of y.arrow_forwardFrom station A with center height for 1.4m in fill, the ground makes a uniform slope of 5% to station B whose center height is 2.8 m in cut. Assuming both sections to be level sections having a width of roadway of 14 m and a side slope of 2:1 for both cut and fill, compute the cross-sectional area of fill 48 m from station A. Distance from station A to station B is 60 m.arrow_forward
