CALCULUS (CLOTH)
4th Edition
ISBN: 9781319050733
Author: Rogawski
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 13CRE
To determine
How to calculate the surface area of the solid obtained by rotating the curve over the given interval about the x-axis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q2/ Let the curve (r = sin e + cos e)
1. Identify the symmetry of the curve. Then sketch the curve in xy-plane.
2. Find the area of the curve region.
Please write the solution on paper.
6-
5-
4-
Find the volume of the solid created by rotating the
following curve y = 3/x about the y-axis.
3-
2-
-1
Chapter 9 Solutions
CALCULUS (CLOTH)
Ch. 9.1 - Prob. 1PQCh. 9.1 - Prob. 2PQCh. 9.1 - Prob. 3PQCh. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7E
Ch. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - Prob. 10ECh. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Prob. 16ECh. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - Prob. 29ECh. 9.1 - Prob. 30ECh. 9.1 - Prob. 31ECh. 9.1 - Prob. 32ECh. 9.2 - Prob. 1PQCh. 9.2 - Prob. 2PQCh. 9.2 - Prob. 3PQCh. 9.2 - Prob. 4PQCh. 9.2 - Prob. 5PQCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - Prob. 49ECh. 9.2 - Prob. 50ECh. 9.2 - Prob. 51ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.2 - Prob. 54ECh. 9.2 - Prob. 55ECh. 9.2 - Prob. 56ECh. 9.2 - Prob. 57ECh. 9.2 - Prob. 58ECh. 9.2 - Prob. 59ECh. 9.2 - Prob. 60ECh. 9.2 - Prob. 61ECh. 9.2 - Prob. 62ECh. 9.2 - Prob. 63ECh. 9.2 - Prob. 64ECh. 9.2 - Prob. 65ECh. 9.3 - Prob. 1PQCh. 9.3 - Prob. 2PQCh. 9.3 - Prob. 3PQCh. 9.3 - Prob. 4PQCh. 9.3 - Prob. 5PQCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - Prob. 27ECh. 9.3 - Prob. 28ECh. 9.3 - Prob. 29ECh. 9.3 - Prob. 30ECh. 9.4 - Prob. 1PQCh. 9.4 - Prob. 2PQCh. 9.4 - Prob. 3PQCh. 9.4 - Prob. 4PQCh. 9.4 - Prob. 5PQCh. 9.4 - Prob. 6PQCh. 9.4 - Prob. 1ECh. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - Prob. 6ECh. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Prob. 18ECh. 9.4 - Prob. 19ECh. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - Prob. 23ECh. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.4 - Prob. 27ECh. 9.4 - Prob. 28ECh. 9.4 - Prob. 29ECh. 9.4 - Prob. 30ECh. 9.4 - Prob. 31ECh. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.4 - Prob. 36ECh. 9.4 - Prob. 37ECh. 9.4 - Prob. 38ECh. 9.4 - Prob. 39ECh. 9.4 - Prob. 40ECh. 9.4 - Prob. 41ECh. 9.4 - Prob. 42ECh. 9.4 - Prob. 43ECh. 9.4 - Prob. 44ECh. 9.4 - Prob. 45ECh. 9.4 - Prob. 46ECh. 9.4 - Prob. 47ECh. 9.4 - Prob. 48ECh. 9.4 - Prob. 49ECh. 9.4 - Prob. 50ECh. 9.4 - Prob. 51ECh. 9 - Prob. 1CRECh. 9 - Prob. 2CRECh. 9 - Prob. 3CRECh. 9 - Prob. 4CRECh. 9 - Prob. 5CRECh. 9 - Prob. 6CRECh. 9 - Prob. 7CRECh. 9 - Prob. 8CRECh. 9 - Prob. 9CRECh. 9 - Prob. 10CRECh. 9 - Prob. 11CRECh. 9 - Prob. 12CRECh. 9 - Prob. 13CRECh. 9 - Prob. 14CRECh. 9 - Prob. 15CRECh. 9 - Prob. 16CRECh. 9 - Prob. 17CRECh. 9 - Prob. 18CRECh. 9 - Prob. 19CRECh. 9 - Prob. 20CRECh. 9 - Prob. 21CRECh. 9 - Prob. 22CRECh. 9 - Prob. 23CRECh. 9 - Prob. 24CRECh. 9 - Prob. 25CRECh. 9 - Prob. 26CRECh. 9 - Prob. 27CRECh. 9 - Prob. 28CRE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Solve these prism and cylinder exercises. Where necessary, round the answers to 2 decimal places unless otherwise specified. A solid right cylinder 9.55 centimeters high contains 1910 cubic centimeters of material. Compute the cross-sectional area of the cylinder.arrow_forwardrefer picturearrow_forward2. Sketch the cylinder y = x² +1.arrow_forward
- Rotate the curve y=sin(2x) between 0 and pi/8 around the x-axis. Find the surface area of the resulting solid of revolution. Please show and explain stepsarrow_forwardplease help me to answer this question make sure the writing understandablearrow_forwardCompute the surface area of the surface generated by revolving the curve c(t) = (t, e') about the x-axis for 0arrow_forward16:24 O * l 87%i Home wroke2.pdf (ans. : a )Vx,0 0; c)x 0) 16. Find the points of intersection of .x' = 4y and y= 4x. (ans.:(0,0,(16,64) 17. Find the coordinates of the points at which the curves cut the axes : a) y=x' -9x' , b) y=(x'-1)(x* - 9) , c) y=(x+1\(x-5} (ans.a)(0,0;(,0,9,0;b)(0,9;(1,0,(-1,),(3,0),(-3,0;c/(0,25;(-10),50) poo0000000oooo000000ooo000000g 20. If flx) = 1/x and g(x}=1/^x ,what are the domain of f, g , ftg , f-g, fg, f'g, g/f, fg and gf ? What is the domain of h(x) =g(x+4) ? (ans.: Vx + 0,Vx> 0,Vxr>0,Vx>0,Vx>0,Vx>0,Vx2 0,Vx 2 0,Vx> 0;Vx>4) 21. Discuss the continuity of : x+- for x 2 (ans.: discontinuous at x=0,2 ; continuous at x=1) 22. Evaluate the following limits : x+ Sinx 1+ Sinx a) lim -* 2x + 5 b) lim x. Sinx c) lim 1-+* tan 3x d) lim N (x+ Sinx ) Vx +1- 2x f) lim 1- Vx e) lim 1-X g) lim(Vn' +1 -n) x' -x (ans.:a)1/2, b)0, c)1/3, d)0, e)1/2, )-1/22, g)0) f(x) for x+ 3 23. Suppose that : flx) = x² – 3x² -4x +12 and h(x)={x- 3 k for x= 3) Find : a) all zeros of…arrow_forwardThe cross-sectional view of a tunnel is shown on the axes below. The line [AB] represents a vertical wall located at the left side of the tunnel. The height, in metres, of the tunnel above the horizontal ground is modelled by y = -0.1x' +0.8x², 2arrow_forwardDetermine the moment of inertia of the area bound by the two curves about the x and y axis.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY