Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 12P
(a)
To determine
The magnitude of average force needed to hold onto the child.
(b)
To determine
The validity of the claim.
(c)
To determine
The need of laws requiring the use of proper safety devices such as seat belts and special toddler seats.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The front 1.20 m of a 1,550-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision.
(a) If a car traveling 22.0 m/s stops uniformly in 1.20 m, how long does the collision last?
(b) What is the magnitude of the average force on the car?
(c) What is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity.
Need Help?
Read It
Master It
A1 160.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 8 400.0 kg truck moving in the same direction at 20.000 m/s. The velocity of the car right after the collision is
18.000 m/s to the east.
Before
After
(a) What is the velocity of the truck right after the collision? (Give your answer to five significant figures.)
4.0
m/s east
(b) What is the change in mechanical energy
car-truck systemi
the collision?
(c) Account for this change in mechanical energy.
The front 1.20 m of a 1,350-kg car is designed as a "crumple zone" that
collapses to absorb the shock of a collision.
(a) If a car traveling 21.0 m/s stops uniformly in 1.20 m, how long does
the collision last?
(b) What is the magnitude of the average force on the car?
(c) What is the magnitude of the acceleration of the car? Express the
acceleration as a multiple of the acceleration of gravity.
g
A man claims that he can hold onto a 12.0-kg child in a head-on collision as long as he has his seat belt on. Consider this man in a collision in which he is in one of two identical cars each traveling toward the other at 60.0 mi/h relative to the ground. The car in which he rides is brought to rest in 0.10 s. (a) Find the magnitude of the average force needed to hold onto the child. (b) Based on your result to part (a), is the man’s claim valid? (c) What does the answer to this problem say about laws requiring the use of proper safety devices such as seat belts and special toddler seats?
Chapter 9 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 9.1 - Two objects have equal kinetic energies. How do...Ch. 9.1 - Your physical education teacher throws a baseball...Ch. 9.3 - Two objects are at rest on a frictionless surface....Ch. 9.3 - Rank an automobile dashboard, seat belt, and air...Ch. 9.4 - Prob. 9.5QQCh. 9.4 - A table-tennis ball is thrown at a stationary...Ch. 9.6 - A baseball bat of uniform density is cut at the...Ch. 9.7 - A cruise ship is moving at constant speed through...Ch. 9 - Prob. 1OQCh. 9 - Prob. 2OQ
Ch. 9 - Prob. 3OQCh. 9 - Prob. 4OQCh. 9 - Prob. 5OQCh. 9 - Prob. 6OQCh. 9 - The momentum of an object is increased by a factor...Ch. 9 - The kinetic energy of an object is increased by a...Ch. 9 - If two particles have equal momenta, are their...Ch. 9 - Prob. 10OQCh. 9 - Prob. 11OQCh. 9 - Two particles of different mass start from rest....Ch. 9 - Prob. 13OQCh. 9 - A basketball is tossed up into the air, falls...Ch. 9 - Prob. 15OQCh. 9 - Prob. 16OQCh. 9 - Prob. 17OQCh. 9 - Prob. 18OQCh. 9 - Prob. 1CQCh. 9 - Prob. 2CQCh. 9 - Prob. 3CQCh. 9 - While in motion, a pitched baseball carries...Ch. 9 - You are standing perfectly still and then take a...Ch. 9 - Prob. 6CQCh. 9 - Two students hold a large bed sheet vertically...Ch. 9 - A juggler juggles three balls in a continuous...Ch. 9 - Prob. 9CQCh. 9 - Does a larger net force exerted on an object...Ch. 9 - Does a larger net force always produce a larger...Ch. 9 - A bomb, initially at rest, explodes into several...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - A 3.00-kg particle has a velocity of...Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - Prob. 9PCh. 9 - When you jump straight up as high as you can, what...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - Prob. 12PCh. 9 - An estimated forcetime curve for a baseball struck...Ch. 9 - Prob. 14PCh. 9 - A glider of mass m is free to slide along a...Ch. 9 - Prob. 16PCh. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - A tennis player receives a shot with the ball...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Prob. 20PCh. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - Prob. 23PCh. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Prob. 39PCh. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - Prob. 41PCh. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Consider a system of two particles in the xy...Ch. 9 - Prob. 53PCh. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - A ball of mass m is thrown straight up into the...Ch. 9 - Prob. 66APCh. 9 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Prob. 73APCh. 9 - Prob. 74APCh. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Prob. 77APCh. 9 - Prob. 78APCh. 9 - Prob. 79APCh. 9 - A small block of mass m1 = 0.500 kg is released...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - Prob. 84APCh. 9 - Prob. 85APCh. 9 - Prob. 86APCh. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 88APCh. 9 - Prob. 89APCh. 9 - Prob. 90APCh. 9 - Prob. 91APCh. 9 - Prob. 92CPCh. 9 - Prob. 93CPCh. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - On a horizontal air track, a glider of mass m...Ch. 9 - Prob. 96CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The front 1.20 m of a 1,450-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. (a) If a car traveling 21.0 m/s stops uniformly in 1.20 m, how long does the collision last? (b) What is the magnitude of the average force on the car? (c) What is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity. Need Help? Read It Master Itarrow_forwardAn investigation of an automobile crash suggests that vehicle A was moving at 52 mph toward the south and vehicle B was moving at an unknown speed toward the north, when the two cars collided, sticking together after the collision. Vehicle A weighs 1350 lbs., and vehicle B weighs 1893 lbs. If the cars did not move significantly after their collision, find the initial speed of vehicle B in mph. Answer: mph (miles per hour)arrow_forwardThe front 1.20 m of a 1550 kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. (a) If a car traveling 30.0 m/s stops uniformly in 1.20 m, how long does the collision last? (b) What is the magnitude of the average force on the car? (c) What is the acceleration of the car? Express the acceleration as a multiple of the acceleration of gravity. (Indicate the direction with the sign of your answer.)arrow_forward
- A 2180-kg car is slowed down uniformly from 24.6 m/s to 5.2 m/s in 3.83 s. (a)What is the magnitude of the average total force acted on the car during this time? (b)How far did the car travel during this time?arrow_forwardThe front 1.20 m of a 1 400-kg car is designed as a “crumple zone” that collapses to absorb the shock of a collision. If a car traveling 25.0 m/s stops uniformly in 1.20 m, (a) how long does the collision last, (b) what is the magnitude of the average force on the car, and (c) what is the magnitude of the acceleration of the car? Express the acceleration as a multiple of the acceleration due to gravity.arrow_forwardA 3.0 x 103 kg truck traveling at 20.0 m/s in a test laboratory collides into a wall and comes to rest in 0.10 s. What is the magnitude of the average force acting on the truck during the collision?arrow_forward
- A loaded tractor-trailer with a total mass of 5500 kg traveling at 2.5 km/h hits a loading dock and comes to a stop in 0.56 s . What is the magnitude of the average force exerted on the truck by the dock?arrow_forwardA 79.5kg person, running horizontally with a velocity of +2.34m/s,jumps onto a 11.8kg sled that is initially at rest. a)Ignoring the effects of friction during the collision, find the velocity of the sled and person as they move away. b) The sled and person coast 30.0m on level snow before coming to rest. What is the coefficient of kinetic friction between the sled and the snow? Note: the tolerance is positive negative 1 in the 3rd significant digit (a) Number i (b) Number i Units Unitsarrow_forwardA horizontal force of 12 N pushes a 0.50-kg book against a vertical wall. The book is initially at rest. If = 0.60 and = 0.50, the acceleration of the book is (in meter per second squared)arrow_forward
- A young girl is riding a bicycle that has a total mass (including the kid) of 21.2 kg. The girl is moving at 5.99 m/s on a flat road when suddenly she slams on the brakes and skids to a stop in 8.22 meters. What was the magnitutde of the average force due to friction acting on the bicycle? Remeber, the magnitude of a force is always positive. Assume a constant friction force measured in Newtons and 3 significant digits in your answer.arrow_forwardA 45.0-kg girl is standing on a 167-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.30 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.) (a) What is her velocity relative to the surface of ice? 0.782 Your response differs from the correct answer by more than 10%. Double check your calculations. m/s (b) What is the velocity of the plank relative to the surface of ice? -0.518 Your response differs from the correct answer by more than 10%. Double check your calculations. m/sarrow_forwardIn a head-on collision, a car stops in 0.14 ss from a speed of 11 m/sm/s . The driver has a mass of 90 kgkg , and is, fortunately, tightly strapped into his seat. What force is applied to the driver by his seat belt during that fraction of a second?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY