Review. A light spring of force constant 3.85 N/m is compressed by 8.00 cm and held between a 0.250-kg block on the left and a 0.500-kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is (a) 0, (b) 0.100, and (c) 0.462. Assume the coefficient of static friction is greater than the coefficient of kinetic friction in every case.
(a)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is 0.
Answer to Problem 87AP
The maximum velocity of each block is
Explanation of Solution
Given info: The force constant is
Write the expression to calculate the force by the spring.
Here,
Substitute
Write the expression of conservation of energy.
Here,
Substitute
Write the expression of conservation of linear momentum.
Substitute
Substitute
Substitute
Thus, the maximum velocity of each block is
Conclusion:
Therefore, the maximum velocity of each block is
(b)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is
Answer to Problem 87AP
The maximum velocity of each block is
Explanation of Solution
Given info: The force constant is
Write the expression to calculate the normal force on the lighter block.
Here,
Substitute
Write the expression to calculate the limiting frictional force.
Here,
Substitute
The spring force,
Since the mass of right block is double than the left block therefore the limiting force of friction is also two times the left one i.e.
The limiting frictional force of right clock is greater than the spring force so it will not move.
The left will continue to move as long as the spring force is large than the friction force.
Write the expression to calculate the limiting frictional force.
Here,
Substitute
Write the expression of conservation of energy.
Substitute
The negative sign indicates that the direction of motion of the lighter block is toward negative x axis.
The velocity of the heavier block is zero.
Thus, the maximum velocity of each block is
Conclusion:
Therefore, the maximum velocity of each block is
(c)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is
Answer to Problem 87AP
The velocity of both blocks is 0.
Explanation of Solution
Given info: The force constant is
Write the expression to calculate the limiting frictional force of left block.
Substitute
Write the expression to calculate the limiting frictional force of right block.
Substitute
The spring force is less than the limiting frictional force of both the blocks so the blocks will not move.
Conclusion:
Therefore, the velocity of both blocks is 0.
Want to see more full solutions like this?
Chapter 9 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning