
FUNDAMENTALS OF PHYSICS,AP ED.
11th Edition
ISBN: 9781119472780
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 121P
An electron undergoes a one-dimensional elastic collision with an initially stationary hydrogen atom. What percentage of the electron’s initial kinetic energy is transferred to kinetic energy of the hydrogen atom? (The mass of the hydrogen atom is 1840 times the mass of the electron.)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 28 m/s when a 60 kg skydiver drops out by releasing his grip on the glider. What is the glider's speed just after the skydiver lets go?
PROBLEM 2
A cube of mass m is placed in a rotating funnel.
(The funnel is rotating around the vertical axis shown
in the diagram.) There is no friction between the cube
and the funnel but the funnel is rotating at just the
right speed needed to keep the cube rotating with the
funnel. The cube travels in a circular path of radius r,
and the angle between the vertical and the wall of the
funnel is 0. Express your answers to parts (b) and (c)
in terms of m, r, g, and/or 0.
(a) Sketch a free-body diagram for the cube. Show
all the forces acting on it, and show the appropriate
coordinate system to use for this problem.
(b) What is the normal force acting on the cube?
FN=mg58
(c) What is the speed v of the cube?
(d) If the speed of the cube is different from what you
determined in part (c), a force of friction is necessary
to keep the cube from slipping in the funnel. If the
funnel is rotating slower than it was above, draw a
new free-body diagram for the cube to show which
way friction…
Circular turns of radius r in a race track are often banked at an angle θ to allow the cars to achieve higher speeds around the turns. Assume friction is not present.
Write an expression for the tan(θ) of a car going around the banked turn in terms of the car's speed v, the radius of the turn r, and g so that the car will not move up or down the incline of the turn.
tan(θ) =
Chapter 9 Solutions
FUNDAMENTALS OF PHYSICS,AP ED.
Ch. 9 - Figure 9-23 shows an overhead view of three...Ch. 9 - Figure 9-24 shows an overhead view of four...Ch. 9 - Consider a box that explodes into two pieces while...Ch. 9 - Figure 9-26 shows graphs of force magnitude versus...Ch. 9 - The free-body diagrams in Fig. 9-27 give, from...Ch. 9 - Figure 9-28 shows four groups of three or four...Ch. 9 - A block slides along a frictionless floor and into...Ch. 9 - Figure 9-30 shows a snapshot of block 1 as it...Ch. 9 - Two bodies have undergone an elastic...Ch. 9 - Figure 9-32: A block on a horizontal floor is...
Ch. 9 - Block 1 with mass m1 slides along an x axis across...Ch. 9 - Figure 9-34 shows four graphs of position versus...Ch. 9 - A 2.00 kg particle has the xy coordinates 1.20 m,...Ch. 9 - Figure 9-35 shows a three-particle system, with...Ch. 9 - Figure 9-36 shows a slab with dimensions d1 = 11.0...Ch. 9 - In Fig. 9-37, three uniform thin rods, each of...Ch. 9 - GO What are a the x coordinate and b the y...Ch. 9 - Figure 9-39 shows a cubical box that has been...Ch. 9 - ILW In the ammonia NH3 molecule of Fig. 9-40,...Ch. 9 - GO A uniform soda can of mass 0.140 kg is 12.0 cm...Ch. 9 - ILW A stone is dropped at t = 0. A second stone,...Ch. 9 - GO A 1000 kg automobile is at rest at a traffic...Ch. 9 - A big olive m = 0.50 kg lies at the origin of an...Ch. 9 - Prob. 12PCh. 9 - SSM A shell is shot with an initial velocity v0 of...Ch. 9 - In Figure 9-43, two particles are launched from...Ch. 9 - Figure 9-44 shows an arrangement with an air...Ch. 9 - GO Ricardo, of mass 80 kg, and Carmelita, who is...Ch. 9 - GO In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg...Ch. 9 - A 0.70 kg ball moving horizontally at 5.0 m/s...Ch. 9 - ILW A 2100 kg truck traveling north at 41 km/h...Ch. 9 - GO At time t = 0, a ball is struck at ground level...Ch. 9 - A 0.30 kg softball has a velocity of 15 m/s at an...Ch. 9 - Figure 9-47 gives an overhead view of the path...Ch. 9 - Until his seventies, Henri LaMothe Fig. 9-48...Ch. 9 - In February 1955, a paratrooper fell 370 m from an...Ch. 9 - A 1.2 kg ball drops vertically onto a floor,...Ch. 9 - In a common but dangerous prank, a chair is pulled...Ch. 9 - SSM A force in the negative direction of an x axis...Ch. 9 - In tae-kwon-do, a hand is slammed down onto a...Ch. 9 - Suppose a gangster sprays Supermans chest with 3 g...Ch. 9 - Two average forces. A steady stream of 0.250 kg...Ch. 9 - Jumping up before the elevator hits. After the...Ch. 9 - A 5.0 kg toy car can move along an x axis; Fig....Ch. 9 - GO Figure 9-51 shows a 0.300 kg baseball just...Ch. 9 - Basilisk lizards can run across the top of a water...Ch. 9 - GO Figure 9-53 shows an approximate plot of force...Ch. 9 - A 0.25 kg puck is initially stationary on an ice...Ch. 9 - SSM A soccer player kicks a soccer ball of mass...Ch. 9 - In the overhead view of Fig. 9-54, a 300 g ball...Ch. 9 - SSM A 91 kg man lying on a surface of negligible...Ch. 9 - A space vehicle is traveling at 4300 km/h relative...Ch. 9 - Figure 9-55 shows a two-ended rocket that is...Ch. 9 - An object, with mass m and speed v relative to an...Ch. 9 - In the Olympiad of 708 B.C., some athletes...Ch. 9 - Prob. 44PCh. 9 - SSM WWW A 20.0 kg body is moving through space in...Ch. 9 - A 4.0 kg mess kit sliding on a frictionless...Ch. 9 - A vessel at rest at the origin of an xy coordinate...Ch. 9 - GO Particle A and particle B are held together...Ch. 9 - A bullet of mass 10 g strikes a ballistic pendulum...Ch. 9 - A 5.20 g bullet moving at 672 m/s strikes a 700 g...Ch. 9 - GO In Fig. 9-58, a 3.50 g bullet is fired...Ch. 9 - GO In Fig. 9-59, a 10 g bullet moving directly...Ch. 9 - Prob. 53PCh. 9 - A completely inelastic collision occurs between...Ch. 9 - ILW A 5.0 kg block with a speed of 3.0 m/s...Ch. 9 - In the before part of Fig. 9-60, car A mass 1100...Ch. 9 - Prob. 57PCh. 9 - In Fig. 9-62, block 2 mass 1.0 kg is at rest on a...Ch. 9 - ILW In Fig. 9-63, block 1 mass 2.0 kg is moving...Ch. 9 - Module 9-7 Elastic Collisions in One Dimension In...Ch. 9 - SSM A cart with mass 340 g moving on a...Ch. 9 - Two titanium spheres approach each other head-on...Ch. 9 - Block 1 of mass m1 slides along a frictionless...Ch. 9 - GO A steel ball of mass 0.500 kg is fastened to a...Ch. 9 - SSM A body of mass 2.0 kg makes an elastic...Ch. 9 - Block 1, with mass m1 and speed 4.0 m/s, slides...Ch. 9 - In Fig. 9-66, particle 1 of mass m1 = 0.30 kg...Ch. 9 - GO In Fig. 9-67, block 1 of mass m1 slides from...Ch. 9 - GO A small ball of mass m is aligned above a...Ch. 9 - GO In Fig. 9-69, puck 1 of mass m1 = 0.20 kg is...Ch. 9 - Prob. 71PCh. 9 - Ball B, moving in the positive direction of an x...Ch. 9 - After a completely inelastic collision, two...Ch. 9 - Two 2.0 kg bodies, A and B, collide. The...Ch. 9 - GO A projectile proton with a speed of 500 m/s...Ch. 9 - A 6090 kg space probe moving nose-first toward...Ch. 9 - SSM In Fig. 9-70, two long barges are moving in...Ch. 9 - Prob. 78PCh. 9 - SSM ILW A rocket that is in deep space and...Ch. 9 - An object is tracked by a radar station and...Ch. 9 - The last stage of a rocket, which is traveling at...Ch. 9 - Pancake collapse of a tall building. In the...Ch. 9 - Prob. 83PCh. 9 - Figure 9-73 shows an overhead view of two...Ch. 9 - Speed deamplifier. In Fig. 9-74, block 1 of mass...Ch. 9 - Speed amplifier. In Fig. 9-75, block 1 of mass m1...Ch. 9 - A ball having a mass of 150 g strikes a wall with...Ch. 9 - A spacecraft is separated into two parts by...Ch. 9 - SSM A 1400 kg car moving at 5.3 m/s is initially...Ch. 9 - ILW A certain radioactive parent nucleus...Ch. 9 - A 75 kg man rides on a 39 kg cart moving at a...Ch. 9 - Two blocks of masses 1.0 kg and 3.0 kg are...Ch. 9 - Prob. 93PCh. 9 - An old Chrysler with mass 2400 kg is moving along...Ch. 9 - SSM In the arrangement of Fig. 9-21, billiard ball...Ch. 9 - A rocket is moving away from the solar system at a...Ch. 9 - The three balls in the overhead view of Fig. 9-76...Ch. 9 - A 0.15 kg ball hits a wall with a velocity of 5.00...Ch. 9 - Prob. 99PCh. 9 - In a game of pool, the cue ball strikes another...Ch. 9 - Prob. 101PCh. 9 - In Fig. 9-79, an 80 kg man is on a ladder hanging...Ch. 9 - In Fig. 9 80, block 1 of mass m1 = 6.6 kg is at...Ch. 9 - Prob. 104PCh. 9 - SSM A 3.0 kg object moving at 8.0 m/s in the...Ch. 9 - A 2140 kg railroad flatcar, which can move with...Ch. 9 - SSM A 6100 kg rocket is set for vertical firing...Ch. 9 - A 500.0 kg module is attached to a 400.0 kg...Ch. 9 - SSM a How far is the center of mass of the...Ch. 9 - A 140 g ball with speed 7.8 m/s strikes a wall...Ch. 9 - SSM A rocket sled with a mass of 2900 kg moves at...Ch. 9 - SSM A pellet gun fires ten 2.0 g pellets per...Ch. 9 - A railroad car moves under a grain elevator at a...Ch. 9 - Figure 9-82 shows a uniform square plate of edge...Ch. 9 - SSM At time t = 0, force F1=(4.00i+5.00j) N acts...Ch. 9 - Two particles P and Q are released from rest 1.0 m...Ch. 9 - A collision occurs between a 2.00 kg particle...Ch. 9 - In the two-sphere arrangement of Fig. 9-20, assume...Ch. 9 - In Fig. 9-83, block 1 slides along an x axis on a...Ch. 9 - A body is traveling at 2.0 m/s along the positive...Ch. 9 - An electron undergoes a one-dimensional elastic...Ch. 9 - Prob. 122PCh. 9 - An unmanned space probe of mass m and speed v...Ch. 9 - A 0.550 kg ball falls directly down onto concrete,...Ch. 9 - An atomic nucleus at rest at the origin of an xy...Ch. 9 - Particle 1 of mass 200 g and speed 3.00 m/s...Ch. 9 - During a lunar mission, it is necessary to...Ch. 9 - Prob. 128P
Additional Science Textbook Solutions
Find more solutions based on key concepts
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
Why is living epithelial tissue limited to a certain thickness?
Human Anatomy & Physiology (2nd Edition)
Practice Problem 5.21 The following are formulas for three compounds, written in noneclipsed conformations. In ...
Organic Chemistry
Could an organism be a fermenter and also be both MR and V—P negative? Explain.
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
25. The 100 kg block in FIGURE EX7.25 takes 6.0 s to reach the floor after being released from rest. What is th...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardSlinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed with no initial velocity and reaches the floor right as his velocity hits zero again. How high is the bed? What is Woody’s velocity halfway down? Enter just the magnitude of velocity.arrow_forwardNo chatgpt pls will upvotearrow_forward
- A positive charge of 91 is located 5.11 m to the left of a negative charge 92. The charges have different magnitudes. On the line through the charges, the net electric field is zero at a spot 2.90 m to the right of the negative charge. On this line there are also two spots where the potential is zero. (a) How far to the left of the negative charge is one spot? (b) How far to the right of the negative charge is the other?arrow_forwardA charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed of 84.1 m/s directly toward the fixed charge. How far does the particle travel before its speed is zero?arrow_forwarda) What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless. T = b) If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg? mm =arrow_forward
- Curve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forwardWhat point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forward
- i need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Elastic and Inelastic Collisions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=M2xnGcaaAi4;License: Standard YouTube License, CC-BY