
Concept explainers
(a)
Interpretation:The work done by or on the system or surrounding or no work done for the given reaction needs to be determined:
Concept Introduction:
At constant volume the change in heat for a system to change the internal energy is represented as ΔE or qV.
At constant pressure the change in heat for a system to change the enthalpy is represented as ΔH or qp. The relation between
(a)

Answer to Problem 103AE
Nitrogen gas changes to liquid nitrogen hence volume decrease that causes surrounding work on the system.
Explanation of Solution
Given reaction:
To predict the sign of w and its direction, the coefficients of all the gaseous products and reactants must be checked. If reaction forms more moles of gaseous products compared to gaseous reactants the reaction will expand the volume and the system does work on the surroundings. When the reaction forms more moles of gaseous reactant compare to gaseous products, the reaction will contract the volume and the surrounding will work on the system. If the gaseous reactant and product numbers are same, it means no change in volume and no work will be done.
Here, nitrogen gas changes to liquid nitrogen hence volume decrease that causes surrounding work on the system.
(b)
Interpretation:The work done by or on the system or surrounding or no work done for the given reaction needs to be determined.
Concept Introduction: Thermodynamic is a branch of chemistry that deals with the energy change with the system and surroundings. It indicates the energy conversion and transfer between system and surroundings.
At constant volume, the change in heat for a system to change the internal energy is represented as ΔE or qV.
At constant pressure the change in heat for a system to change the enthalpy is represented as ΔH or qp. The relation between
(b)

Answer to Problem 103AE
In the given reaction,the number of gaseous reactants and products is same hence no change in volume. It means no work is done on the system and surroundings.
Explanation of Solution
Given reaction:
To predict the sign of w and its direction, the coefficients of all the gaseous products and reactants must be checked. If reaction forms more moles of gaseous products compare to gaseous reactants the reaction will expand the volume and the system does work on the surroundings. When the reaction forms more moles of gaseous reactant compared to gaseous products the reaction will contract the volume and the surrounding will work on the system. If the gaseous reactant and product numbers are same, it means no change in volume and no work will be done.
Here,number of gaseous reactants and products is same hence no change in volume. It means no work is done on the system and surroundings.
(c)
Interpretation:The work done by or on the system or surrounding or no work done for the given reaction needs to be determined.
Concept Introduction: Thermodynamic is a branch of chemistry that deals with the energy change with the system and surroundings. It indicates the energy conversion and transfer between system and surroundings.
At constant volume the change in heat for a system to change the internal energy is represented as ΔE or qV.
At constant pressure the change in heat for a system to change the enthalpy is represented as ΔH or qp. The relation between
(c)

Answer to Problem 103AE
The number of gaseous products is formed from solid and liquid reactant hence volume increases during the reaction that causes expansion of system and work done on the surroundings.
Explanation of Solution
Given reaction:
To predict the sign of w and its direction, the coefficients of all the gaseous products and reactants must be checked. If reaction forms more moles of gaseous products compare to gaseous reactants the reaction will expand the volume and the system does work on the surroundings. When the reaction forms more moles of gaseous reactant compare to gaseous products the reaction will contract the volume and the surrounding will work on the system. If the gaseous reactant and product numbers are same it means no change in volume and no work will be done.
Here number of gaseous products is formed from solid and liquid reactant hence volume increases during the reaction that causes expansion of system and work is done on the surroundings.
(d)
Interpretation:The work done by or on the system or surrounding or no work done for the given reaction needs to be determined.
Concept Introduction: Thermodynamic is a branch of chemistry that deals with the energy change with the system and surroundings. It indicates the energy conversion and transfer between system and surroundings.
At constant volume the change in heat for a system to change the internal energy is represented as ΔE or qV.
At constant pressure the change in heat for a system to change the enthalpy is represented as ΔH or qp. The relation between
(d)

Answer to Problem 103AE
Here the number of gaseous products is less than reactant hence volume decreases during the reaction that causes contraction of system and work done by the surroundings.
Explanation of Solution
Given reaction:
To predict the sign of w and its direction, the coefficients of all the gaseous products and reactants must be checked. If reaction forms more moles of gaseous products compare to gaseous reactants the reaction will expand the volume and the system does work on the surroundings. When the reaction forms more moles of gaseous reactant compared to gaseous products the reaction will contract the volume and the surrounding will work on the system. If the gaseous reactant and product numbers are same, it means no change in volume and no work will be done.
Here number of gaseous products are less than reactant hence volume decreases during the reaction that causes contraction of system and work done by the surroundings.
(e)
Interpretation:The work done by or on the system or surrounding or no work done for the given reaction needs to be determined.
Concept Introduction: Thermodynamic is a branch of chemistry that deals with the energy change with the system and surroundings. It indicates the energy conversion and transfer between system and surroundings.
At constant volume the change in heat for a system to change the internal energy is represented as ΔE or qV.
At constant pressure the change in heat for a system to change the enthalpy is represented as ΔH or qp. The relation between
(e)

Answer to Problem 103AE
Here the number of gaseous products increases than reactant hence volume increases during the reaction that causes expansion of system and work done by the system.
Explanation of Solution
Given reaction:
To predict the sign of w and its direction, the coefficients of all the gaseous products and reactants must be checked. If reaction forms more moles of gaseous products compared to gaseous reactants the reaction will expand the volume and the system will work on the surroundings. When the reaction forms more moles of gaseous reactant compared to gaseous products, the reaction will contract the volume and the surrounding will work on the system. If the gaseous reactant and product numbers are same it means there is no change in volume and no work will be done.
Here, the number of gaseous products increases than reactant hence volume increases during the reaction that causes expansion of system and work done by the system.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK CHEMICAL PRINCIPLES
- At 90ºC the vapor pressure of ortho-xylene is 20 kPa and that of meta-xylene is 18 kPa. What is the composition of the vapor in equilibrium with a mixture in which the mole fraction of o-xylene is 0.60?arrow_forwardDraw the products of this reduction of a ketone with sodium borohydride. Use a dash or wedge bond to indicate the stereochemistry of substituents on asymmetric centers, where applicableIgnore any inorganic byproducts. 1) NaBH4 2) HCI/H2O Select to Drawarrow_forwardWhy do you think people who live at high altitudes are advised to add salt to water when boiling food like pasta? What mole fraction of NaCl is needed to raise the boiling point of H2O by 3˚C? Does the amount of salt added to water (typically about one teaspoon to four quarts of water) substantially change the boiling point? (Kb (H2O) = 0.51˚C/molal.)arrow_forward
- pls help asaparrow_forwardpls help asaparrow_forward9. Consider the following galvanic cell: Fe (s) | Fe(NO3)2 (aq) || Sn(NO3)2 (aq) | Sn (s) a. Write an equation for the half reactions occurring at the anode and cathode. b. Calculate the standard cell potential Show all of your work. c. Draw and label the galvanic cell, including the anode and cathode, direction of electron flow, and direction of ion migration.arrow_forward
- pls help asaparrow_forward11. Use the equation below to answer the following questions: 2 Al(s) + 3 Cd(NO3)2 (aq) → 2 Al(NO3)3 (aq) + 3 Cd(s) a. What is the net ionic equation for the reaction? b. Which species is a spectator ion in this reaction? Define a spectator ion. c. Identify the oxidizing agent and the reducing agent.arrow_forwardpls help asaparrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





