Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO 2 ( s ) → CO 2 ( g ) When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The Δ H f o for CO 2 (s) is -427.4 kJ.mol) When carbon dioxide sublimes, the gaseous CO 2 is cold enough to cause water vapor in the air to condense, forming fog.
Solution Summary: The author explains the standard change in enthalpy for the melting of ice and determine the mass of dry icy required to cool 15 L of water from 85° C to 25°C.
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation:
CO
2
(
s
)
→
CO
2
(
g
)
When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough A small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The
Δ
H
f
o
for CO2 (s) is -427.4 kJ.mol)
When carbon dioxide sublimes, the gaseous CO2is cold enough to cause water vapor in the air to condense, forming fog.
Calculate the flux of oxygen between the ocean and the atmosphere, given that:
Temp = 18°C
Salinity = 35 ppt
Density = 1025 kg/m3
Oxygen concentration measured in bulk water = 263.84 mmol/m3
Wind speed = 7.4 m/s
Oxygen is observed to be about 10% initially supersaturated
( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...
A. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation).
B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic).
(Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in
the largest.)
1.
A.Electrons in a cyclic conjugated system. 18
B.The compound is (a, aa, or na) a
2.
A.Electrons in a cyclic conjugated system. 10
B.The compound is (a, aa, or na) na
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY