Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 70P
Air enters a compressor at ambient conditions of 15 psia and 60°F with a low velocity and exits at 150 psia, 620°F, and 350 ft/s. The compressor is cooled by the ambient air at 60°F at a rate of 1500 Btu/min. The power input to the compressor is 400 hp. Determine (a) the mass flow rate of air and (b) the portion of the power input that is used just to overcome the irreversibilities.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Steam enters the condenser of a steam power plant at 50 kPa and a quality of 85 percent with a mass flow rate of 400 kg/min. It is to be cooled by water from a nearby river by circulating the water through the tubes within the condenser. To prevent thermal pollution, the river water is not allowed to experience a temperature rise above 20°C. If the steam is to leave the condenser as saturated liquid at 50 kPa, determine the mass flow rate of the cooling water required.
Air enters a compressor at ambient condition of 100 kPa and 250C with a velocity of 30 m/s and exits at 1.8 MPa and 400°C. The compressor is cooled at a rate of 5040 kJ/min.
Determine the mass flow rate of air through the compressor and the power input to the compressor in kW.
Qout = 5040 kl/min
1.8 MPa
400°C
Compressor
100 kPa
20°C
30 m/s
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 6 Mpa, 900 oC, and 95 m/s, and the exit conditions are 15 kPa, 0.89 quality,
and 56 m/s. The mass flow rate of the steam is 26 kg/s. Determine (a) the change in kinetic energy (kJ/kg), (b) the power output (kW), and (c) the turbine inlet area
(m2). Submit your solution by multiplying (a)*(b)*(c) =
Chapter 8 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - Under what conditions does the reversible work...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - How does reversible work differ from useful work?Ch. 8.8 - Is a process during which no entropy is generated...Ch. 8.8 - Consider an environment of zero absolute pressure...Ch. 8.8 - It is well known that the actual work between the...Ch. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...
Ch. 8.8 - Prob. 11PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 13PCh. 8.8 - Saturated steam is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - A geothermal power plant uses geothermal liquid...Ch. 8.8 - A house that is losing heat at a rate of 35,000...Ch. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 24PCh. 8.8 - Prob. 25PCh. 8.8 - Prob. 26PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - Prob. 37PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - Prob. 41PCh. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - A 50-kg iron block and a 20-kg copper block, both...Ch. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - Prob. 47PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 49PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 54PCh. 8.8 - Prob. 55PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 57PCh. 8.8 - Prob. 58PCh. 8.8 - The adiabatic compressor of a refrigeration system...Ch. 8.8 - Refrigerant-134a at 140 kPa and 10C is compressed...Ch. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Steam enters a turbine at 9 MPa, 600C, and 60 m/s...Ch. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 66PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - A 0.6-m3 rigid tank is filled with saturated...Ch. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Liquid water at 200 kPa and 15C is heated in a...Ch. 8.8 - Prob. 78PCh. 8.8 - Prob. 79PCh. 8.8 - A well-insulated shell-and-tube heat exchanger is...Ch. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - Prob. 82PCh. 8.8 - Prob. 83PCh. 8.8 - Prob. 84PCh. 8.8 - Prob. 85RPCh. 8.8 - Prob. 86RPCh. 8.8 - An aluminum pan has a flat bottom whose diameter...Ch. 8.8 - Prob. 88RPCh. 8.8 - Prob. 89RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 92RPCh. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Prob. 97RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 99RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - An adiabatic turbine operates with air entering at...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Prob. 103RPCh. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 113RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 116RPCh. 8.8 - A rigid 50-L nitrogen cylinder is equipped with a...Ch. 8.8 - Prob. 118RPCh. 8.8 - Prob. 119RPCh. 8.8 - Prob. 120RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 122RPCh. 8.8 - Prob. 123RPCh. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 129RPCh. 8.8 - Prob. 130RPCh. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 133RPCh. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - Prob. 135FEPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - Prob. 138FEPCh. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 142FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air enters a compressor at ambient conditions of 15 psia and 60°F with a low velocity and exits at 150 psia, 620°F, and 350 ft/s. The compressor is cooled by the ambient air at 60°F at a rate of 1500 Btu/min. The power input to the compressor is 400 hp. Determine the portion of the power input that is used just to overcome the irreversibilities.arrow_forwardAir enters a compressor at ambient conditions of 100 kPa and 20°C at a rate of 6.2 m3 /s with a low velocity and exits at 900 kPa, 60°C, and 80 m/s. The compressor is cooled by cooling water that experiences a temperature rise of 10°C. The isothermal efficiency of the compressor is 70 percent. Determine the mass flow rate of the cooling water.arrow_forwardAir enters the compressor of a gas-turbine plant at ambient conditions of 100 kPa and 25°C with a low velocity and exits at 1 MPa and 347°C with a velocity of 90 m/s. The compressor is cooled at a rate of 1500 kJ/min, and the power input to the compressor is 245.0 kW. Determine the mass flow rate of air through the compressor. The inlet and exit enthalpies of air are 298.2 kJ/kg and 628.07 kJ/kg. (Round the final answer to three decimal places.) The mass flow rate of air is kg/s.arrow_forward
- Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10MPa, 400°C, and 100 m/s, and the exit conditions are 10 kPa, 89N percent quality, and 50m/s. The mass flow rate of the steam is 19N kg/s. Determine (a) the change in kinetic energy,(b) the power output, and (c) the turbine inlet area.arrow_forwardIn a steady flow apparatus, 135 KJ of work is done by each kg of fluid. The specific volume of the fluid, pressure and speed at the inlet are 0.37 m3/Kg, 600KPa, and 16 m/s. The inlet is 32 m above discharge pipe. The discharge conditions are 0.62 m3/kg, 100KPa and 270 m/s. The total heat loss between the inlet and discharge is 9 KJ/Kg of fluid. In the flowing through this apparatus, does the specific internal energy increase or decrease, and by how much.arrow_forwardAir enters a gas turbine at 150 psia and 700°F and leaves at 15 psia and 100°F. Determine the inlet and outlet volume flow rates when the mass flow rate through this turbine is 5 lbm/s.arrow_forward
- Water vapor enters a turbine with a mass flow rate of 3 kg/s, and at a temperature and pressure of 500°C and 1 MPa, respectively. The heat loss inside the turbine is 250 kW and the steam leaves the turbine at a temperature and pressure of 150°C and 100 kPa. Neglect any changes in the velocity or the elevation. The work output of the turbine is used to operate a heat pump whose COP value is 2. Determine the rate of heat removal from the sink (1) and the rate of heat rejection to the source (2) of this heat pump. a. 3715 kW (removal), 1857.5 kW (rejection) b. 1857.5 kW (removal), 3500 kW (rejection) c. 1857.5 kW (removal), 3715 kW (rejection) d. 1500 kW (removal), 3715 kW (rejection)arrow_forwardA 1.8kg/s of steam expands in a turbine producing 550 kW of power output. The steam enters at a velocity of 18 m/s and exits at 70 m/s. The reduction of specific enthalpy is 400 kJ/kg. Determine that the heat flow per second when the inlet of the turbine is located 900mm above the outlet.arrow_forwardSteam enters a turbine steadily at a flow rate of 1 kg/s at 7 MPa and 500 degrees and exits as saturated steam at 40 kPa. If there is a heat loss of 10 kW from the turbine, what will be the power produced by the turbine?arrow_forward
- A refrigeration system is being designed to cool eggs (ρ = 67.4 lbm/ft3 and cp = 0.80 Btu/lbm·°F) with an average mass of 0.14 lbm from an initial temperature of 90°F to a final average temperature of 50°F by air at 34°F at a rate of 3000 eggs per hour. Determine the required volume flow rate of air, in ft3 /h, if the temperature rise of air is not to exceed 10°F.arrow_forwardIn a steady flow system, 50 kJ of work is done per kg of fluid, the values of specific volume pressure and velocity at the inlet and exit sections are 0.4m3 / kg , 600 kPa and 15 m/s and 0.6 m3 / kg, 100 kPa and 250 m/s respectively. The inlet is 30 m above the exit. The heat loss from the system is 8 kJ/kg. Calculate the change in internal energy per kg of fluid.arrow_forwardAir enters a compressor with a pressure of 14.5 psia, a temperature of 80°F, and a volumetric flow rate of 20 ft3/s, and exits the compressor at 50 psia. Heat transfer from the compressor to its surrounding is 20 Btu/lbm of the air. If the compressor power input is 105 hp, what is the exit temperature of air?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License