Concept explainers
Which is a more valuable resource for work production in a closed system −15 ft3 of air at 100 psia and 250°F or 20 ft3 of helium at 60 psia and 200°F? Take T0 = 77°F and P0 = 14.7 psia.
The more valuable resource for work production in a closed system; air or helium.
Answer to Problem 29P
The air has the more valuable resource for work production in a closed system.
Explanation of Solution
Express the mass in the system.
Here, mass is
Express the entropy change between the given state and dead state.
Here, entropy change between the given state and dead state is
Express the specific volume at the given state.
Express the specific volume at dead state.
Express the specific closed system exergy.
Here, specific internal energy is
Express the total exergy available for the production of work.
Here, mass is
Conclusion:
Solve for AIR:
Refer Table A-1E, “molar mass, gas constant and critical point properties”, and write the gas constant of air.
Refer Table A-2E, “ideal gas specific heats of various common gases”, and write the properties of air.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Solve for HELIUM:
Refer Table A-1E, “molar mass, gas constant and critical point properties”, and write the gas constant of helium.
Refer Table A-2E, “ideal gas specific heats of various common gases”, and write the properties of helium.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
On comparing the total exergy available for the potential of work from Equations (VII) and (VIII), it is obtained that air has more potential.
Hence, the air has the more valuable resource for work production in a closed system.
Want to see more full solutions like this?
Chapter 8 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- Water (2 kg) is in a rigid tank where 22% of the water is in the liquid phase and the temperature is 50 deg C. The tank is heated until all the water is in the vapor phase at a temperature of 120 deg C. This process requires 389 kJ of heat. The wall of the tank is maintained at a constant temperature of 0,4 deg C. What is the entropy produced (kJ/K)? (Report answer to three decimal places)arrow_forwardA piston cylinder arrangement contains 0.02 m³ of air at 50°C and 400 kPa. Heat is added in the amount of 50 kJ and work is done by a paddle wheel until the temperature reaches 700°C. If the pressure is held constant, how much paddle-wheel work must be added to the air? Assume constant specific heats. Equations to be used: о - W раddle 3 т(hz — h) %3 тср (Тz — Ti) PV m = RTarrow_forwardBaal eyels A 0.8-m insulated rigid tank contains 2 kg of carbon dioxide at 90 kPa. Now paddle- wheel work is done on the system until the pressure in the tank rises to 150 kPa. Determine the minimum paddle-wheel work of this process. Take To =300 K (R = 0.189RJ %3D 0.68 J kgK kgK FO Uring constant specific heats at roomarrow_forward
- 1. Calculate the work done in a polytropic (n=1.21) compression of a gas in a system with moving boundary from P1 = 15 psia, V1 = 1 ft3 to P2 = 150 psia, V2 = 0.15 ft3.arrow_forwardSteam goes from h=1470 BTU/lbm and P=1000 psia to a saturated steam with a quality of x= 93% in an isentropic process. What is the pressure of the saturated steam?.arrow_forwardQuestion 3 An insulated 1.15 m³ rigid tank contains air at 350 kPa and 50ºC. A valve connected to the tank is now opened and air is allowed to escape until the pressure inside drops to 175 kPa. The air temperature during this process is kept constant by an electric resistance heater placed in the tank. Determine the electric work done during this process. The air is considered ideal gas with R-0.287 kPa m³/kg.K. At T-50 °C-323 K, h-323.30 kJ/kg and u-230.58 kJ/kg. Air V=1.15 m³ P= 350 kPa T= 50°C Weinarrow_forward
- 3.9 m3/s of saturated water vapor enters a compressor at 250 kPa and leaves it with a pressure equal to 1400 kPa. Assume the process to be isentropic. Determine the work rate necessary to the nearest kW.arrow_forwardPlease include a P-V diagram for this problem. Don't just give the answer ,Which i already have.arrow_forwardThe numbe is 8arrow_forward
- 2. A frictionless piston-cylinder device initially contains 50 L of saturated liquid refrigerant-RI34a. The piston is free to move, and its mass is such that it maintains a pressure of 500 kPa on the refrigerant. The refrigerant is now heated until its temperature rises to 70°C. Calculate the work done during this process. R134a P=constantarrow_forwardAir enters a refrigeration coil at 32°C db and 24°C wb at a rate of 40 m3 /min. The apparatus dew point temperature of the coil is 13°C. If 18 kW of refrigeration are produced, what is the dry bulb temperature of the air leaving the coil? Assume sea-level pressure. Show the states on psychrometric chart showing all the points.arrow_forwardYou must have to draw a P-V diagram .arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY