THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 1P
What final state will maximize the work output of a device?
Expert Solution & Answer
To determine
What final state will maximize the work output of a device.
Answer to Problem 1P
The dead state will maximize the work output of a device.
Explanation of Solution
There are two conditions for any device to maximize the work output.
- The process to be performed must be reversible.
- The final state of a device in system should be a dead state.
A system is called as in the dead state when the system is in thermodynamic equilibrium with respect to its surroundings as it does not react or chemically inert with its surrounding and the system remains at similar pressure and temperature. Thus, a system is said to be has zero availability at the dead state.
Hence, a system in dead state will maximize the work output of a device.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
what can happen to the universe as entropy increases?
Q19: A stationary mass of gas is compressed without friction from an initial state of 2 m3 and 2*105 N/m2 to a final state of 1 m3 and 2*105 N/m2 , the pressure remaining the same. There is a transfer of 360 kJ of heat from the gas during the a process. How much does the internal energy of the gas change
Determine the total work done by a gas system following an expansion process as shown in Figure below.
Chapter 8 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - Under what conditions does the reversible work...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - How does reversible work differ from useful work?Ch. 8.8 - Is a process during which no entropy is generated...Ch. 8.8 - Consider an environment of zero absolute pressure...Ch. 8.8 - It is well known that the actual work between the...Ch. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...
Ch. 8.8 - Prob. 11PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 13PCh. 8.8 - Saturated steam is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - A geothermal power plant uses geothermal liquid...Ch. 8.8 - A house that is losing heat at a rate of 35,000...Ch. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 24PCh. 8.8 - Prob. 25PCh. 8.8 - Prob. 26PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - Prob. 37PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - Prob. 41PCh. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - A 50-kg iron block and a 20-kg copper block, both...Ch. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - Prob. 47PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 49PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 54PCh. 8.8 - Prob. 55PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 57PCh. 8.8 - Prob. 58PCh. 8.8 - The adiabatic compressor of a refrigeration system...Ch. 8.8 - Refrigerant-134a at 140 kPa and 10C is compressed...Ch. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Steam enters a turbine at 9 MPa, 600C, and 60 m/s...Ch. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 66PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - A 0.6-m3 rigid tank is filled with saturated...Ch. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Liquid water at 200 kPa and 15C is heated in a...Ch. 8.8 - Prob. 78PCh. 8.8 - Prob. 79PCh. 8.8 - A well-insulated shell-and-tube heat exchanger is...Ch. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - Prob. 82PCh. 8.8 - Prob. 83PCh. 8.8 - Prob. 84PCh. 8.8 - Prob. 85RPCh. 8.8 - Prob. 86RPCh. 8.8 - An aluminum pan has a flat bottom whose diameter...Ch. 8.8 - Prob. 88RPCh. 8.8 - Prob. 89RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 92RPCh. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Prob. 97RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 99RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - An adiabatic turbine operates with air entering at...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Prob. 103RPCh. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 113RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 116RPCh. 8.8 - A rigid 50-L nitrogen cylinder is equipped with a...Ch. 8.8 - Prob. 118RPCh. 8.8 - Prob. 119RPCh. 8.8 - Prob. 120RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 122RPCh. 8.8 - Prob. 123RPCh. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 129RPCh. 8.8 - Prob. 130RPCh. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 133RPCh. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - Prob. 135FEPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - Prob. 138FEPCh. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 142FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (Thermodynamics)a 10 lbm is drop on a 5 kgm piston with a face area of 800 cm2 causing the cylinder to decrease in volume and produced a 2KW of Work with 4kgs/hr of gas exiting the fan and heat deflection of 0.5 KJ/Kg. Consider that the atmospheric pressure is 100 KPa, determine the change in internal energy, in KJ/Kg. Neglect the friction between the piston and the cylinder surface.arrow_forwardDoes anyone know how to solve this problem? Any help will be appreciated. Thanksarrow_forwardA gas with specific volume v₁ = 1 m³/Kg and pressure p₁=1bar in a closed system undergoes a thermodynamic cycle which consists of the following three separate processes: 1->2: Isobaric compression to v₂-0.25 m³/Kg 2->3: Isometric heating. 3->1: Isothermal expansion (pV = constant) to the initial volume. Calculate the specific work produced by the gas per cycle. Present your answer in kJ/kg.arrow_forward
- 1) Provide equations that best match the following: • Total boundary work Boundary work for a constant volume process Boundary work for a constant pressure processarrow_forwardA fluid at 0.5 bar occupying 0.07 m3 is compressed reversibly to a pressure of 9.8 bar and specific volume of 0.4 m3/kg according to the law pvn = c. The fluid then expands reversibly according to the law pv2 = c to 1.2 bar. A reversible cooling at constant volume then restores the fluid back to initial state. Calculate the net work for the process in Joules to round figure. No mega or Kilo for units.arrow_forward(1.3) Suppose a process increases Gibbs free energy of a system coupled to both a heat bath and volume reservoir, i.e., AG > 0. What does that tell you about the system's coupling to work reservoirs? Explain. Answer:arrow_forward
- In a piston cylinder system, a fluid at 0.5 bar occupying 0.10 m3 is compressed reversibly to a pressure of 11.3 bar and specific volume of 0.3 m3/kg according to the law pvn = c. The fluid then expands reversibly according to the law pv2 = c to 2.4 bar. A reversible cooling at constant volume then restores the fluid back to initial state. Calculate the net work for the process in Joulesarrow_forwardIn a piston cylinder system, a fluid at 0.8 bar occupying 0.07 m³ is compressed reversibly to a pressure of 10.2 bar and specific volume of 0.6 m³/kg according to the law p = c. The fluid then expands reversibly according to the law pv² = c to 1.1 bar. A reversible cooling at constant volume then restores the fluid back to initial state. Calculate the net work for the process in Joules. To 3 d.p. and insert the unit symbol joules.arrow_forwardThe second-law efficiency of naturally occurring processes is zero if none of the work potential is recovered.arrow_forward
- If 200 J of heat is released by a reservoir at 373 K and absorbed by a second reservoir at 273 K, how much work capability is “lost” in this process? 200 J - 200 J 400 J 0arrow_forwardA gas undergoes a cycle in a piston–cylinder assembly consisting of the following three processes:Process 1–2: Constant pressure, p = 1.4 bar, V1 = 0.028 m3, W12 = 5 kJProcess 2–3: Compression with pV = constant, U3 = U2Process 3–1: Constant volume, U1 - U3 = -25 kJThere are no significant changes in kinetic or potential energy.(a) Calculate the net work for the cycle, in kJ.(b) Calculate the heat transfer for process 1–2, in kJ.arrow_forwardDuring a steady flow process, the pressure of the working substance drops from 100 to 20 psia, the velocity increases from 200 to 1200 fps, the internal energy decreases 25 Btu/lb., and the volume increases from 1 to 6 cu.ft/lb. If the heat transferred is zero, what is the work of 1 lb. of the substance in Btu?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License