Concept explainers
(a)
The final temperature in the cylinder at equilibrium condition.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 106RP
The final temperature in the cylinder at equilibrium condition is
Explanation of Solution
Write the ideal gas equation to calculate the mass of the gas
Here, initial pressure of the gas is
Write the energy balance equation for the entire system considering it as a stationary closed system.
Here, net energy input to the system is
Conclusion:
Refer the Table A-1E of “Molar mass, gas constant, and critical-point properties”, obtain the gas constants of Nitrogen and Helium as
Refer the Table A-2E of “Ideal-gas specific heats of various common gases”, obtain the specific heats of Nitrogen and Helium as
Substitute
Substitute
Substitute
Thus, the final temperature in the cylinder at equilibrium condition is
Final temperature at equilibrium condition is same even if the piston is restricted from moving.
(b)
The amount of wasted work potential for the process.
The amount of wasted work potential for the process when piston is restricted from moving.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 106RP
The amount of wasted work potential for the process is
The amount of wasted work potential for the process when piston is restricted from moving is
Explanation of Solution
Write the expression to calculate the total number of moles in the cylinder
Write the expression to calculate the pressure from ideal gas expression.
Here, universal gas constant is
Write the entropy generation
Here, entropy input to the system is
Write the expression to calculate the exergy destroyed
Here, the surrounding’s temperature is
Write the formula to calculate the entropy generation when the piston is restricted to move.
Conclusion:
Refer the Table A-1E of “Molar mass, gas constant, and critical-point properties”, obtain the molar masses of Nitrogen and Helium as
Substitute
Substitute
Substitute
Substitute
Thus, the amount of wasted work potential for the process is
Substitute
Substitute
Thus, the amount of wasted work potential for the process when piston is restricted from moving is
Want to see more full solutions like this?
Chapter 8 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
- Which one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forwardIn the lost foam process, the pattern doesn’t need to be removed from the mold. True or Falsearrow_forward
- Tempering eliminates internal stresses in glass. True or Falsearrow_forwardThermoset polymers can be recycled with little to no degradation in properties. True or Falsearrow_forwardTwo forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forward
- No chatgpt pls will upvotearrow_forward101 the three shafts if the diameter ratio is 2 (D/d = 2)? Ans. na, tension = 1.21, na, bending = 1.19, na, torsion = 1.17. 6.32 A material with a yield strength of S₁ = 350 MPa is subjected to the stress state shown in Sketch c. What is the factor of safety based on the maximum shear stress and distortion energy theories? Ans. For MSST, n, = 11.67. 50 MPa 85 MPa 20 MPa 70 MPa Sketch c, for Problems 6.32 and 6.33arrow_forwardCan you draw the left view of the first orthographic projectionarrow_forward
- Important: I've posted this question twice and received incorrect answers. I've clearly stated that I don't require AI-generated working out. I need a genuine, expert-written solution with proper working. If you can't provide that, refer this question to someone who can please!. Note: Please provide a clear, step-by-step handwritten solution (no AI involvement). I require an expert-level answer and will assess it based on quality and accuracy with that I'll give it a thumbs up or down!. Hence, refer to the provided image for clarity. Double-check everything for correctness before submitting. Thank you!arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question: If the flow rate through the system below is 0.04m3s-1, find the difference in elevation H of the two reservoirs.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)