Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 117P
The collar fits loosely around a fixed shaft that has a radius of 2 in. If the coefficient of kinetic friction between the shaft and the collar is, μk = 0.3, determine the force P on the horizontal segment of the belt so that the collar rotates clockwise with a constant angular velocity. Assume that the belt does not slip on the collar; rather, the collar slips on the shaft. Neglect the weight and thickness of the belt and collar. The radius, measured from the center of the collar to the mean thickness of the belt, is 2.25 in.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.
9.
10.
The centrifugal tension in belts
(a) increases power transmitted
(b) decreases power transmitted
(c) have no effect on the power transmitted
(d) increases power transmitted upto a certain speed and then decreases
When the belt is stationary, it is subjected to some tension, known as initial tension. The value of this
tension is equal to the
(a) tension in the tight side of the belt
(b) tension in the slack side of the belt
(c) sum of the tensions in the tight side and slack side of the belt
(d) average tension of the tight side and slack side of the belt
The relation between the pitch of the chain (p) and pitch circle diameter of the sprocket (d) is given by
60°
(a) p=d sin
(c) p=d sin
(120°
T
where T Number of teeth on the sprocket.
90°
(b) p=d sin
T
180°
(d) p=d sin
T
OBJECTIVE TYPE QUESTIONS
1.
The maximum fluctuation of energy is the
2.
(a) sum of maximum and minimum energies
(b) difference between the maximum and minimum energies
(c) ratio of the maximum energy and minimum energy
(d) ratio of the mean resisting torque to the work done per cycle
In a turning moment diagram, the variations of energy above and below the mean resisting torque line
is called
(a) fluctuation of energy
(b) maximum fluctuation of energy
(c) coefficient of fluctuation of energy
(d) none of the above
Chapter 16: Turning Moment Diagrams and Flywheel 611
The ratio of the maximum fluctuation of speed to the mean speed is called
3.
(a) fluctuation of speed
(c) coefficient of fluctuation of speed
4.
(b) maximum fluctuation of speed
(a) none of these
The ratio of the maximum fluctuation of energy to the.......... is called coefficient of fluctuation of
energy.
(a) minimum fluctuation of energy
(b) work done per cycle
The maximum fluctuation of energy in a flywheel is equal to
5.…
OBJECTIVE TYPE QUESTIONS
1.
The velocity ratio of two pulleys connected by an open belt or crossed belt is
2.
(a) directly proportional to their diameters
(b) inversely proportional to their diameters
(c) directly proportional to the square of their diameters
(d) inversely proportional to the square of their diameters
Two pulleys of diameters d, and d, and at distance x apart are connected by means of an open belt
drive. The length of the belt is
(a)(d+d₁)+2x+
(d₁+d₂)²
4x
(b)(d₁-d₂)+2x+
(d₁-d₂)²
4x
(c)(d₁+d₂)+ +2x+
(d₁-d₂)²
4x
(d)(d-d₂)+2x+
(d₁ +d₂)²
4x
3.
In a cone pulley, if the sum of radii of the pulleys on the driving and driven shafts is constant, then
(a) open belt drive is recommended
(b) cross belt drive is recommended
(c) both open belt drive and cross belt drive are recommended
(d) the drive is recommended depending upon the torque transmitted
Due to slip of the belt, the velocity ratio of the belt drive
4.
(a) decreases
5.
(b) increases
(c) does not change
When two pulleys…
Chapter 8 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 8.2 - P81. Determine the friction force at the surface...Ch. 8.2 - P82. Determine M to cause impending motion of the...Ch. 8.2 - P83. Determine the force P to move block B.Ch. 8.2 - P84. Determine the force P needed to cause...Ch. 8.2 - F81. Determine the friction developed between the...Ch. 8.2 - F82. Determine the minimum force P to prevent the...Ch. 8.2 - Prob. 3FPCh. 8.2 - F84. If the coefficient of static friction at...Ch. 8.2 - F85. Determine the maximum force P that can be...Ch. 8.2 - F86. Determine the minimum coefficient of static...
Ch. 8.2 - F87. Blocks A, B, and C have weights of 50 N, 25...Ch. 8.2 - F88. If the coefficient of static friction at all...Ch. 8.2 - Prob. 9FPCh. 8.2 - Determine the maximum force P the connection can...Ch. 8.2 - The tractor exerts a towing force T=400 lb....Ch. 8.2 - The mine car and its contents have a total mass of...Ch. 8.2 - Prob. 4PCh. 8.2 - The automobile has a mass of 2 Mg and center of...Ch. 8.2 - The automobile has a mass of 2 Mg and canter of...Ch. 8.2 - The block brake consists of a pin-connected lever...Ch. 8.2 - The block brake consists of a pin-connected lever...Ch. 8.2 - Prob. 9PCh. 8.2 - Determine the angle at which the applied force P...Ch. 8.2 - Determine the maximum weight W the man can lift...Ch. 8.2 - Prob. 12PCh. 8.2 - Prob. 13PCh. 8.2 - The car has a mass of 1.6 Mg and center of mass at...Ch. 8.2 - The log has a coefficient of state friction of, s...Ch. 8.2 - Prob. 16PCh. 8.2 - The 180-Ib man climbs up the ladder and stops at...Ch. 8.2 - The spool of wire having a weight of 300 Ib rests...Ch. 8.2 - The spool of wire having a weight of 300 Ib rests...Ch. 8.2 - Prob. 20PCh. 8.2 - A man attempts to support a stack of books...Ch. 8.2 - The tongs are used to lift the 150-kg crate, whose...Ch. 8.2 - The beam is supported by a pin at A and a roller...Ch. 8.2 - The uniform thin pole has a weight of 30 Ib and a...Ch. 8.2 - The uniform pole has a weight of 30 Ib and a...Ch. 8.2 - The block brake is used to stop the wheel from...Ch. 8.2 - Solve Prob. 8-26 if the couple moment M0 is...Ch. 8.2 - A worker walks up the sloped roof that is defined...Ch. 8.2 - The friction pawl is pinned at A and rests against...Ch. 8.2 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8.2 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8.2 - Determine the smallest force P that must be...Ch. 8.2 - The man having a weight of 200 Ib pushes...Ch. 8.2 - The uniform hoop of weight W is subjected to the...Ch. 8.2 - Determine the maximum horizontal force P that can...Ch. 8.2 - Determine the minimum force P needed to push the...Ch. 8.2 - The coefficients of static and kinetic friction...Ch. 8.2 - The coefficient of static friction between the...Ch. 8.2 - Determine the smallest coefficient of static...Ch. 8.2 - If =30, determine the minimum coefficient of...Ch. 8.2 - Prob. 41PCh. 8.2 - Prob. 42PCh. 8.2 - Investigate whether the equilibrium can be...Ch. 8.2 - Prob. 44PCh. 8.2 - The beam AB has a negligible mass and thickness...Ch. 8.2 - Prob. 46PCh. 8.2 - Crates A and B weigh 200 Ib and 150 Ib,...Ch. 8.2 - Prob. 48PCh. 8.2 - The uniform crate has a mass of 150 kg. If the...Ch. 8.2 - Prob. 50PCh. 8.2 - Prob. 51PCh. 8.2 - Prob. 52PCh. 8.2 - Determine the smallest couple moment that can be...Ch. 8.2 - Prob. 54PCh. 8.2 - Prob. 55PCh. 8.2 - The disk has a weight W and lies on a plane that...Ch. 8.2 - The man has a weight of 200 lb, and the...Ch. 8.2 - Prob. 1CPCh. 8.2 - Prob. 4CPCh. 8.2 - Prob. 5CPCh. 8.4 - Determine the largest angle that will cause the...Ch. 8.4 - Prob. 59PCh. 8.4 - The wedge is used to level the member. Determine...Ch. 8.4 - The two blocks used in a measuring device have...Ch. 8.4 - If P=250 N, determine the required minimum...Ch. 8.4 - Determine the minimum applied force P required to...Ch. 8.4 - Prob. 64PCh. 8.4 - Prob. 65PCh. 8.4 - Prob. 66PCh. 8.4 - Prob. 67PCh. 8.4 - Prob. 68PCh. 8.4 - Prob. 69PCh. 8.4 - Prob. 70PCh. 8.4 - Prob. 71PCh. 8.4 - Prob. 72PCh. 8.4 - Prob. 73PCh. 8.4 - Prob. 74PCh. 8.4 - The shaft has a square-threaded screw with a lead...Ch. 8.4 - Prob. 76PCh. 8.4 - Prob. 77PCh. 8.4 - Prob. 78PCh. 8.4 - Prob. 79PCh. 8.4 - Prob. 80PCh. 8.4 - Prob. 81PCh. 8.4 - Determine the horizontal force P that must be...Ch. 8.5 - A cylinder having a mass of 250 kg is to be...Ch. 8.5 - Prob. 84PCh. 8.5 - A 180-lb farmer tries to restrain the cow from...Ch. 8.5 - The 100-lb boy at A is suspended from the cable...Ch. 8.5 - Prob. 87PCh. 8.5 - Prob. 88PCh. 8.5 - A cable is attached to the 20-kg plate B, passes...Ch. 8.5 - Prob. 90PCh. 8.5 - Prob. 91PCh. 8.5 - Determine the force P that must be applied to the...Ch. 8.5 - Prob. 93PCh. 8.5 - Prob. 94PCh. 8.5 - Prob. 95PCh. 8.5 - Determine the maximum and the minimum values of...Ch. 8.5 - Prob. 97PCh. 8.5 - Prob. 98PCh. 8.5 - Prob. 99PCh. 8.5 - Blocks A and B have a mass of 7 kg and 10 kg,...Ch. 8.5 - The uniform bar AB is supported by a rope that...Ch. 8.5 - Prob. 102PCh. 8.5 - Prob. 103PCh. 8.5 - Prob. 104PCh. 8.5 - A 10-kg cylinder D, which is attached to a small...Ch. 8.5 - Prob. 106PCh. 8.8 - The collar bearing uniformly supports an axial...Ch. 8.8 - The collar bearing uniformly supports an axial...Ch. 8.8 - The floor-polishing machine rotates at a constant...Ch. 8.8 - Prob. 110PCh. 8.8 - Prob. 111PCh. 8.8 - Prob. 113PCh. 8.8 - Prob. 114PCh. 8.8 - Prob. 115PCh. 8.8 - Prob. 116PCh. 8.8 - The collar fits loosely around a fixed shaft that...Ch. 8.8 - Prob. 118PCh. 8.8 - Prob. 119PCh. 8.8 - Prob. 120PCh. 8.8 - Solve Prob. 8-120 if the force P is applied...Ch. 8.8 - Prob. 122PCh. 8.8 - Prob. 123PCh. 8.8 - The uniform disk fits loosely over a fixed shaft...Ch. 8.8 - Prob. 125PCh. 8.8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8.8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8.8 - The vehicle has a weight of 2600 lb and center of...Ch. 8.8 - Prob. 129PCh. 8.8 - The handcart has wheels with a diameter of 6 in....Ch. 8.8 - Prob. 131PCh. 8.8 - Prob. 132PCh. 8.8 - R81. The uniform 20-lb ladder rests on the rough...Ch. 8.8 - R82. The uniform 60-kg crate C rests uniformly on...Ch. 8.8 - R83. A 35-kg disk rests on an inclined surface for...Ch. 8.8 - Prob. 4RPCh. 8.8 - Prob. 5RPCh. 8.8 - Prob. 6RPCh. 8.8 - Prob. 7RPCh. 8.8 - The hand cart has wheels with a diameter of 80 mm....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q3: (10 MARKS) A piston with a weight of 29.4 N is supported by a spring and dashpot. A dashpot of damping coefficient c = 275 N.s/m acts in parallel with the spring of stiffness k = 2400 N/m. A fluctuating pressure p = 960 sin 30t N/m² acts on the piston, whose top surface area is 0.05 m². Determine the steady-state displacement as a function of time and the maximum force transmitted to the base. P=Po sin cot Warrow_forward9. Design a spur gear drive required to transmit 45 kW at a pinion speed of 800 r.p.m. The velocity ratio is 3.5 : 1. The teeth are 20° full-depth involute with 18 teeth on the pinion. Both the pinion and gear are made of steel with a maximum safe static stress of 180 MPa. Assume a safe stress of 40 MPa for the material of the shaft and key. 10. Design a pair of spur gears with stub teeth to transmit 55 kW from a 175 mm pinion running at 2500 r.p.m. to a gear running at 1500 r.p.m. Both the gears are made of steel having B.H.N. 260. Approximate the pitch by means of Lewis equation and then adjust the dimensions to keep within the limits set by the dynamic load and wear equation.arrow_forward7. A motor shaft rotating at 1440 r.p.m. has to transmit 15 kW to a low speed shaft rotating at 500 r.p.m. The teeth are 20° involute with 25 teeth on the pinion. Both the pinion and gear are made of cast iron with a maximum safe stress of 56 MPa. A safe stress of 35 MPa may be taken for the shaft on which the gear is mounted. Design and sketch the spur gear drive to suit the above conditions. The starting torque may be assumed as 1,25 times the running torque. Ruins 20 LW at 100 nm to another shaft running approxiarrow_forward
- 6. A two stage reduction drive is to be designed to transmit 2 kW; the input speed being 960 r.p.m. and overall reduction ratio being 9. The drive consists of straight tooth spur gears only, the shafts being spaced 200 mm apart, the input and output shafts being co-axial.arrow_forward2 A metal block of mass m = 10 kg is sliding along a frictionless surface with an initial speed Vo, as indicated below. The block then slides above an electromagnetic brake that applies a force FEB to the block, opposing its motion. The magnitude of the electromagnetic force varies quadratically with the distance moved along the brake (x): 10 FEB = kx², with k = 5 N m² V₁ = 8 m/s m = 10 kg FEB Frictionless surface Electromagnetic brake ⇒x Determine how far the block slides along the electromagnetic brake before stopping, in m.arrow_forwardQ1: Determine the length, angle of contact, and width of a 9.75 mm thick leather belt required to transmit 15 kW from a motor running at 900 r.p.m. The diameter of the driving pulley of the motor is 300 mm. The driven pulley runs at 300 r.p.m. and the distance between the centers of two pulleys is 3 meters. The density of the leather is 1000 kg/m³. The maximum allowable stress in the leather is 2.5 MPa. The coefficient of friction between the leather and pulley is 0.3. Assume open belt drive.arrow_forward
- 5. A 15 kW and 1200 r.p.m. motor drives a compressor at 300 r.p.m. through a pair of spur gears having 20° stub teeth. The centre to centre distance between the shafts is 400 mm. The motor pinion is made of forged steel having an allowable static stress as 210 MPa, while the gear is made of cast steel having allowable static stress as 140 MPa. Assuming that the drive operates 8 to 10 hours per day under light shock conditions, find from the standpoint of strength, 1. Module; 2. Face width and 3. Number of teeth and pitch circle diameter of each gear. Check the gears thus designed from the consideration of wear. The surface endurance limit may be taken as 700 MPa. [Ans. m = 6 mm; b= 60 mm; Tp=24; T=96; Dp = 144mm; DG = 576 mm]arrow_forward4. G A micarta pinion rotating at 1200 r.p.m. is to transmit 1 kW to a cast iron gear at a speed of 192 r.p.m. Assuming a starting overload of 20% and using 20° full depth involute teeth, determine the module, number of teeth on the pinion and gear and face width. Take allowable static strength for micarta as 40 MPa and for cast iron as 53 MPa. Check the pair in wear.arrow_forwardI want to solve these choicesarrow_forward
- 2. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 32: 1. The pressure angle is 14½. It transmits 5 kW at 1800 r.p.m. of pinion. Considering only strength, design the smallest diameter gears and find also necessary face width. The number of teeth should not be less than 15 teeth on either gear. The elastic strength of bronze may be taken as 84 MPa and of steel as 105 MPa. Lewis factor for 14½½ pressure angle may be taken 0.684 0.124 y = No. of teeth as [Ans. m 3 mm; b= 35 mm; Dp = 48 mm; D= 168 mm]arrow_forwardQ2. Determine the safety factors for the bracket rod shown in Figure 2 based on both the distortion-energy theory and the maximum shear theory and compare them. Given: The material is 2024-T4 aluminum with a yield strength of 47 000 psi. The rod length /= 6 in. and arm a = 8 in. The rod outside diameter od 1.5 in., id = 1 in, h=2 in., t=0.5 in., Load F= 1000 lb. Assumptions: The load is static and the assembly is at room temperature. Consider shear due to transverse loading as well as other stresses. (Note: solve in SI units) wall tube Figure 2 armarrow_forwardThe question has been set up with all the cuts needed to accurately derive expressions for V(x) and M(x). Using the cuts free body diagrams set up below, derive expressions for V(x) and M(x). If you use the method of cuts then validate your answers using calculus or vice versa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License