Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.7, Problem 8.6QQ
(a)
To determine
The change of the speed of the ship.
(b)
To determine
The speed of the ship after the passenger has stop running.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(I) A person going for a morning jog on the deck of acruise ship is running toward the bow (front) of the ship at 2.0 m/swhile the ship is moving ahead at What is 8.5 m/s the velocity of the jogger relative to the water? Later, the jogger is moving toward the stern (rear) of the ship. What is the jogger’s velocity relative to the water now?
A truck is traveling east at 80 km/h. At an intersection 32 km ahead, a car is traveling north at 50 km/h. (a) How long after this moment will the vehicles be closest to each other? (b) How far apart will they be at that point?
I1
Chapter 8 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 8.1 - Two objects have equal kinetic energies. How do...Ch. 8.1 - Your physical education teacher throws a baseball...Ch. 8.3 - Prob. 8.3QQCh. 8.4 - A table-tennis ball is thrown at a stationary...Ch. 8.6 - A baseball bat of uniform denisty is cut at the...Ch. 8.7 - Prob. 8.6QQCh. 8 - Prob. 1OQCh. 8 - A head-on, elastic collision occurs between two...Ch. 8 - Prob. 3OQCh. 8 - A 57.0-g tennis ball is traveling straight at a...
Ch. 8 - A 5-kg cart moving to the right with a speed of 6...Ch. 8 - A 2-kg object moving to the right with a speed of...Ch. 8 - The momentum of an object is increased by a factor...Ch. 8 - The kinetic energy of an object is increased by a...Ch. 8 - Prob. 9OQCh. 8 - Prob. 10OQCh. 8 - Prob. 11OQCh. 8 - Prob. 12OQCh. 8 - Prob. 13OQCh. 8 - A ball is suspended by a string that is tied to a...Ch. 8 - A massive tractor is rolling down a country road....Ch. 8 - Prob. 16OQCh. 8 - Prob. 17OQCh. 8 - Prob. 18OQCh. 8 - Prob. 1CQCh. 8 - Prob. 2CQCh. 8 - A bomb, initially at rest, explodes into several...Ch. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - A juggler juggles three balls in a continuous...Ch. 8 - Prob. 7CQCh. 8 - Prob. 8CQCh. 8 - Prob. 9CQCh. 8 - Prob. 10CQCh. 8 - Prob. 11CQCh. 8 - Prob. 12CQCh. 8 - An open box slides across a frictionless, icy...Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - A girl of mass mg is standing on a plank of mass...Ch. 8 - Two blocks of masses m and 3m are placed on a...Ch. 8 - Prob. 8PCh. 8 - A 3.00-kg steel ball strikes a wall with a speed...Ch. 8 - A tennis player receives a shot with the ball...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - In a slow-pitch softball game, a 0.200-kg softball...Ch. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Two blocks are free to slide along the...Ch. 8 - As shown in Figure P8.20, a bullet of mass m and...Ch. 8 - Prob. 21PCh. 8 - A tennis ball of mass mt is held just above a...Ch. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - An object of mass 3.00 kg, moving with an initial...Ch. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - A billiard ball moving at 5.00 m/s strikes a...Ch. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - A water molecule consists of an oxygen atom with...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - A 2.00-kg particle has a velocity (2.00i3.00j)m/s,...Ch. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - A rocket has total mass Mi = 360 kg, including...Ch. 8 - A model rocket engine has an average thrust of...Ch. 8 - Two gliders are set in motion on a horizontal air...Ch. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - A small block of mass m1 = 0.500 kg is released...Ch. 8 - Prob. 56PCh. 8 - A 5.00-g bullet moving with an initial speed of v...Ch. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - A cannon is rigidly attached to a carriage, which...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - George of the Jungle, with mass m, swings on a...Ch. 8 - Sand from a stationary hopper falls onto a moving...Ch. 8 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Traffic shock wave. An abrupt slowdown in concentratedtraffic can travel as a pulse, termed a shock wave, along theline of cars, either downstream (in the traffic direction) or upstream,or it can be stationary shows a uniformlyspaced line of cars moving at speed v = 25.0 m/s toward a uniformlyspaced line of slow cars moving at speed vs = 5.00 m/s.Assume that each faster car adds length L = 12.0 m (car lengthplus buffer zone) to the line of slow cars when it joins the line, and assumeit slows abruptly at the last instant. (a) For what separation distanced between the faster cars does the shock wave remainstationary? If the separation is twice that amount, what are the (b)speed and (c) direction (upstream or downstream) of the shock wave?arrow_forwardTwo trains A and B of length 800 m each are moving on two parallel tracks with a uniform speed of 144 km h-1 in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by 2 m s-2. If after 100 s, the guard of B just brushes past the driver of A, what was the original distance between them ?arrow_forwardII. The position coordinate of a particle which is confined to move along a straight line is given by s = 2t3 – 24t + 6, where s is measured in meters from a convenient origin and t is in seconds. Determine (a) the time required for the particle to reach a velocity of 72 m/s from its initial condition at t = 0, (b) the acceleration of the particle when v = 30 m/s, and © the net displacement of the particle during the interval t = 1s and t = 4s. (Practice at Home)arrow_forward
- 12–102. If the dart is thrown with a speed of 10 m/s, determine the shortest possible time before it strikes the target. Also, what is the corresponding angle 04 at which it should be thrown, and what is the velocity of the dart when it strikes the target? 12–103. If the dart is thrown with a speed of 10 m/s, determine the longest possible time when it strikes the target. Also, what is the corresponding angle 04 at which it should be thrown, and what is the velocity of the dart when it strikes the target? 4 marrow_forwardPlease explain how to do this question. A particle moving in a straight line passes through a fixed point O The displacement s metres of the particle, t seconds after it passes through O, is given by s = 5t – 3 cos 2t + 3. (ii) Find the maximum velocity of the particle and the value of t at which this first occurs.arrow_forwardfrom two towns d = 24 km apart. Josh rode at Vj = 25 km/h, and Mike at um = 15 km/h. The moment they start, a fly also starts from Josh towards Mike and after reaching Mike, immediately returns towards Josh. The fly continues back and forth motion between the cyclists till the cyclists meet. Air speed of fly is Uf = 30 km/h and the wind blows always towards Mike with a constant velocity u = 10 km/h. Find the total distance s flown by the fly.arrow_forward
- Two trains are on the same track a distance d [m] apart heading towards one another. Each train has a constant speed Vo [m/s]. A fly starting out at the front of one train, flies towards the other at a constant speed u [m/s]. Upon reaching the other train, the fly turns around and goes towards the first train. What is the total distance (in both directions) that the fly travels before getting squashed in the collision of the two trains? a. ud 2V0 b. d c. d/2 d. e. f. Vod 2u u² d v2 (2V+u)d 2Vo darrow_forwardThe Starship Enterprise returns from warp drive to ordinary space with a forward speed of 57 km/s. lo the crow's great surprisc, a Klingon ship is 150 km directly ahead, traveling in the same direction at a mere 21 km/s. Without evasive action, the Enterprise will overtake and collide with the Klingons in just about 4 5s The Enterprise's computers react instantly to brake the ship. What magnitude acceleration does the Enterprise need to just barely avoid a collision with the Klingon ship? Assume the acceleration is constant Hint: Draw a position versus time graph showing the motions of both the Enterprise and the Klingon ship. Let æn - 0km be the location of the Interprise as it returns from warp drive I low do you show graphically the situation in which the collision is "barely avoided"? Once you decide what it looks like graphically, express that situation mathematically. Express your answer to two significant figures and include the appropriate units. a = μA Value m s² Review |…arrow_forward(2) Assume the position function of a particle at time t is given by the function p(t) = (2t°, –7t, 11) Find the (a) displacement from t = 1 to t = 3 and (b) the total distance traveled from t = 1 to t = 3. (recall that v(t) = p'(t))arrow_forward
- Step by step solutionarrow_forward(i) (ii) (iii) Rylie has a boat which moves at a top speed of 12 ms¯¹ in still water. From point R, he wants to go due north to point D on the opposite side of the river, as shown in the diagram below. D River current 5ms-1 Boat Speed 12ms¹ R Dock E Velocity vector 120 m North Today the current in the river is flowing at 5 ms ¹. From R, he steers the boat due north toward D at top speed. Due to the current he drifts down the river and arrives at point E. Taking R as the origin, write down Rylie's velocity vector in the form xi+yj and find the magnitude of this vector. What is the bearing of Rylie's velocity vector and how far does he travel from R to E ? On what bearing should Rylie have pointed the boat, so that he arrived at the D, with the boat travelling at its top speed?arrow_forwardhow much time would it take you to cover the61-m length of the walkway if, once you get on the walkway, youimmediately turn around and start walking in the opposite direction with a speed of 1.3 m>s relative to the walkway?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY