(a)
The final velocity of the person and the cart.
(a)
Answer to Problem 49P
The final velocity of the person and the cart is
Explanation of Solution
Write the expression for conservation of momentum for inelastic collision.
Here,
Conclusion:
Substitute
In vector notation the velocity of the cart and person is,
Therefore, the final velocity of the person and the cart is
(b)
The friction force acting on the person.
(b)
Answer to Problem 49P
The friction force acting on the person is
Explanation of Solution
Write the expression for normal force by using Newton’s second law in y direction
Here,
Write the expression for frictional force exerted on the person.
Here,
Conclusion:
Substitute
Substitute
In vector notation the frictional force is,
Therefore, the friction force acting on the person is
(c)
The time taken for the frictional force acting on the person.
(c)
Answer to Problem 49P
The time taken for the frictional force acting on the person is
Explanation of Solution
Write the expression for person’s momentum equal to the impulse.
Here,
Write the expression for initial momentum.
Here,
Write the expression for final momentum.
Here,
Write the expression for impulse.
Here,
Conclusion:
Substitute the equations (V), (VI) and (VII) in equation (IV).
Substitute
Therefore, the time taken for the frictional force acting on the person is
(d)
The change in momentum of the person and the cart.
(d)
Answer to Problem 49P
The change in momentum of the person is
Explanation of Solution
Write the expression for change in momentum of the person.
Write the expression for change in momentum of the cart.
Conclusion:
Substitute
Substitute
Therefore, the change in momentum of the person is
(e)
The displacement of the person relative to the ground.
(e)
Answer to Problem 49P
The displacement of the person relative to the ground is
Explanation of Solution
Write the expression for displacement of the person relative to the ground.
Here,
Conclusion:
Substitute
Therefore, the displacement of the person relative to the ground is
(f)
The displacement of the cart relative to the ground.
(f)
Answer to Problem 49P
The displacement of the cart relative to the ground is
Explanation of Solution
Write the expression for displacement of the cart relative to the ground.
Conclusion:
Substitute
Therefore, the displacement of the cart relative to the ground is
(g)
The change in kinetic energy of the person.
(g)
Answer to Problem 49P
The change in kinetic energy of the person is
Explanation of Solution
Write the expression for change in kinetic energy of the person.
Conclusion:
Substitute
Therefore, the change in kinetic energy of the person is
(h)
The change in kinetic energy of the cart.
(h)
Answer to Problem 49P
The change in kinetic energy of the cart is
Explanation of Solution
Write the expression for change in kinetic energy of the cart.
Conclusion:
Substitute
Therefore, the change in kinetic energy of the cart is
(i)
Why the answers part (g) and (h) are differ.
(i)
Answer to Problem 49P
Because. the distance moved by the cart is different from the distance moved by the point of application of friction force to the cart.
Explanation of Solution
The force exerted by the person on the cart must be equal in magnitude and opposite in direction to the force exerted by the cart on the person. The changes in momentum of the two objects must be equal in magnitude and must be added to zero.
The change in kinetic energy is different in magnitude and does not add to zero.
Conclusion:
The following situation is represents in two ways,
The distance moved by the cart is different from the distance moved by the point of application of friction force to the cart.
The total change in mechanical energy for both objects add together becomes zero, it is perfectly in elastic collision.
Want to see more full solutions like this?
Chapter 8 Solutions
Principles of Physics: A Calculus-Based Text
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that system of all three beads is zero. 91 E field lines 93 92 What charge does each bead carry? 91 92 -1.45 = = What is the net charge of the system? What charges have to be equal? μC 2.9 × What is the net charge of the system? What charges have to be equal? μC 93 = 2.9 μС 92 is between and 91 93° The sum of the charge on q₁ and 92 is 91 + 92 = −2.9 μC, and the net charge of thearrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardNo chatgpt pls will upvotearrow_forward
- Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forwardFind the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forwardwould 0.215 be the answer for part b?arrow_forward
- Suppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forwardWhat functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forward
- What does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning