(a)
The final velocity of the object.
(a)
Answer to Problem 58P
The final velocity of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression of impulse momentum equation.
Here,
Substitute
Thus, the final velocity of the object is
Conclusion:
Therefore, the final velocity of the object is
(b)
The acceleration of the object.
(b)
Answer to Problem 58P
The acceleration of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Here,
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(c)
The acceleration of the object.
(c)
Answer to Problem 58P
The acceleration of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(d)
The vector displacement of the object.
(d)
Answer to Problem 58P
The vector displacement of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the vector displacement of the object.
Here,
Substitute
Thus, the vector displacement of the object is
Conclusion:
Therefore, the vector displacement of the object is
(e)
The work done on the object.
(e)
Answer to Problem 58P
The work done on the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the work done on the object.
Here,
Substitute
Thus, the work done on the object is
Conclusion:
Therefore, the work done on the object is
(f)
The final kinetic energy of the object.
(f)
Answer to Problem 58P
The final kinetic energy of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(g)
The final kinetic energy of the object.
(g)
Answer to Problem 58P
The final kinetic energy of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(h)
The result of comparison of the answers in part (b), (c) and (f), (g).
(h)
Answer to Problem 58P
The value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Write the expression to calculate the acceleration of the object.
According to the second law of motion,
Substitute
The equation (2) and (8) are same therefore, the value of acceleration in part (b) and (c) are same.
Write the expression to calculate the work done on the object,
Substitute
The equation (10) and (6) are same.
Thus, the value of kinetic energy in part (f) and (g) are same.
Conclusion:
Therefore, the value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Want to see more full solutions like this?
Chapter 8 Solutions
Principles of Physics: A Calculus-Based Text
- A car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forwardA tennis player receives a shot with the ball (0.060 0 kg) traveling horizontally at 50.0 m/s and returns the shot with the ball traveling horizontally at 40.0 m/s in the opposite direction. (a) What is the impulse delivered to the ball by the tennis racquet? (b) What work does the racquet do on the ball?arrow_forwardThe momentum of an object is increased by a factor of 4 in magnitude. By what factor is its kinetic energy changed? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1arrow_forward
- A ball of mass 250 g is thrown with an initial velocity of 25 m/s at an angle of 30 with the horizontal direction. Ignore air resistance. What is the momentum of the ball after 0.2 s? (Do this problem by finding the components of the momentum first, and then constructing the magnitude and direction of the momentum vector from the components.)arrow_forwardIn a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forwardA particle has a momentum of magnitude 40.0 kg m/s and a kinetic energy of 3.40 102 J. a. What is the mass of the particle? b. What is the speed of the particle?arrow_forward
- The following question concerns a collision in outer space, far enough from any planets so that the external forces can be considered as negligible. An unmanned spacecraft, having mass 1,500,000 kg and speed 25,000 km/hr collides with a small meteor, having mass 3,000 kg and speed 2,100 km/hr, in the Kuiper belt. a. Prior to the collision, what are the total kinetic energy and total momentum? b. Assuming a head-on collision, in which the meteor becomes lodged into the spacecraft’s body and the two objects move off together, what are the total kinetic energy and momentum after the collision? c. If instead of getting lodged into the spacecraft, the meteor bounced off, would the change in the space craft’s momentum be larger or smaller, or is there not enough information to tell? Explain.arrow_forwardA 777.86 g rubber ball is dropped from a height of 20.5m and undergoes a perfectly elastic collision with the earth. a.) What is the earth's speed after the collision? Assume the earth was at rest before the collision. b.) How many years would it take the earth to move 1 mm at this speed?arrow_forwardA 2000 kg car is being pushed from rest by a bulldozer. The car is pushed for 10 seconds along a rough road with a coefficient of friction of 0.05. The car experiences an impulse of 10,000 kgm/s. a. What net force acts on the car? b. What is the acceleration of the car? c. What is the work done by the non-conservative forces as the car moves along the road? 1:55 P 5/12/26 acer F12 PrtSc Pause Del Home Pg Up F9 F10 F11 F7 F8 Scr Lk SysRq Break Ins + Backspace Nur Loc & 8 U K Enter H 近arrow_forward
- Suppose F₁ = 2000 N. (Figure 1) You may want to review (Pages 262-266). Figure F, (N) F 0- 0 N. 2 4 6 1 of 1 -t (ms) Part A What impulse does the force shown in the figure exert on a 250 g particle? Express your answer in newton-seconds to two significant figures. WD ΑΣΦ J = Submit Previous Answers Request Answer X Incorrect; Try Again Provide Feedback ? N.Sarrow_forwardis the following statement true? If not, why? Within the system, both the momentum and kinetic energy are conserved during each of the collisions ( spring-loaded elastic, hoop spring, and putty collisions).arrow_forwardmicroblology textb. PHY166_onlıne Jab. Pinterest Word sdev E Reading li Constants An atomic nucleus at rest decays radioactively into an alpha particle and a different nucleus. Part A What will be the speed of this recoiling nucleus if the speed of the alpha particle is 2.2x105 m/s ? Assume the recoiling nucleus has a mass 57 times greater than that of the alpha particle. Express your answer to two significant figures and include the appropriate units. HÁ Vnucleus = Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining Provide Feedback Next > P Pearson Copyright © 2021 Pearson Education Inc. All rights reserved. I Terms of Use | Privacy Policy | Permisstons | Contact Us | V0 3:44 acerarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill