(a)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is 0.
(a)
Answer to Problem 59P
The maximum velocity of each block is
Explanation of Solution
Given info: The force constant is
Write the expression to calculate the force by the spring.
Here,
Substitute
Write the expression of conservation of energy.
Here,
Substitute
Write the expression of conservation of linear momentum.
Substitute
Substitute
Substitute
Thus, the maximum velocity of each block is
Conclusion:
Therefore, the maximum velocity of each block is
(b)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is
(b)
Answer to Problem 59P
The maximum velocity of each block is
Explanation of Solution
Given info: The force constant is
Write the expression to calculate the normal force on the lighter block.
Here,
Substitute
Write the expression to calculate the limiting frictional force.
Here,
Substitute
The spring force,
Since the mass of right block is double than the left block therefore the limiting
The limiting frictional force of right clock is greater than the spring force so it will not move.
The left will continue to move as long as the spring force is large than the friction force.
Write the expression to calculate the limiting frictional force.
Here,
Substitute
Write the expression of conservation of energy.
Substitute
The negative sign indicates that the direction of motion of the lighter block is toward negative x axis.
The velocity of the heavier block is zero.
Thus, the maximum velocity of each block is
Conclusion:
Therefore, the maximum velocity of each block is
(c)
The maximum velocity of each block if the coefficient of kinetic friction between block and the surface is
(c)
Answer to Problem 59P
The velocity of both blocks is 0.
Explanation of Solution
Given info: The force constant is
Write the expression to calculate the limiting frictional force of left block.
Substitute
Write the expression to calculate the limiting frictional force of right block.
Substitute
The spring force is less than the limiting frictional force of both the blocks so the blocks will not move.
Conclusion:
Therefore, the velocity of both blocks is 0.
Want to see more full solutions like this?
Chapter 8 Solutions
Principles of Physics: A Calculus-Based Text
- A 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P7.68a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P7.68b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P7.68c). The object is then forced toward the left by the spring (Fig. P7.68d) and continues to move in that direction beyond the springs unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P7.68e). Find (a) the distance of compression d, (b) the speed v at the unstretched position when the object is moving to the left (Fig. P7.68d), and (c) the distance D where the object comes to rest. Figure P7.68arrow_forwardYou hold a slingshot at arms length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 200 cm/s. With the same procedure, you fire a bean with speed 600 cm/s. What is the ratio of the mass of the bean to the mass of the pebble? (a) 19 (b) 13 (c) 1 (d) 3 (e) 9arrow_forwardA block of mass m1 = 4.00 kg initially at rest on top of a frictionless, horizontal table is attached by a lightweight string to a second block of mass m2 = 3.00 kg hanging vertically from the edge of the table and a distance h = 0.450 m above the floor (Fig. P8.77). If the edge of the table is assumed to be frictionless, what is the speed with which the first block leaves the edge of the table?arrow_forward
- A 6 000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in Figure P6.27 (page 188). Both springs are described by Hookes law and have spring constants k1 = 1 600 N/m and k2, = 3 400 N/m. After the first spring compresses a distance of 30.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in the graph. The car comes to rest 50.0 cm after first contacting the two-spring system. Find the cars initial speed.arrow_forwardAn athlete jumping vertically on a trampoline leaves the surface with a velocity of 8.5 m/s upward. What maximum height does she reach? (a) 13 m (b) 2.3 m (c) 3.7 m (d) 0.27 m (e) The answer cant be determined because the mass of the athlete isnt given.arrow_forwardWhen a 3.5 kg block is pushed against a massless spring of force constant 4.5 x 103 N/m, the spring is compressed 7.9 cm. The block is released, and it slides 2.8 m (from the point at which it is released) across a horizontal surface before friction stops it. What is the coefficient of kinetic friction between the block and the surface?arrow_forward
- The ball launcher in a pinball machine has a spring that has a force constant of 1.23 N/cm. The surface on which the ball moves is in- clined 15.6◦ with respect to the horizontal. If the spring is initially compressed 3.58 cm, find the launching speed of a 0.19 kg ball when the plunger is released. The acceleration due to gravity is 9.8 m/s2 . Friction and the mass of the plunger are negligible.arrow_forwardA horizontal force of 80.0 N is applied to a 5.00 kg block as the block slides a distance of 0.800 m along a horizontal floor. The coefficient of kinetic friction between the floor and the block is 0.500. If the block is initially at rest, how fast is it moving at the end of the displacement?arrow_forwardA 25 kg block is held against a compressed spring and then the spring is allowed to decompress giving the block a velocity. The block then slides to the right on a horizontal frictionless surface and then up a frictionless incline.arrow_forward
- You are an industrial engineer with a shipping company. As part of the package-handling system, a small box with mass 1.60 kg is placed against a light spring that is compressed 0.280 m. The spring, whose other end is attached to a wall, has force constant k = 45.0 N/m. The spring and box are released from rest, and the box travels along a horizontal surface for which the coefficient of kinetic friction with the box is mk = 0.300. When the box has traveled 0.280 m and the spring has reached its equilibrium length, the box loses contact with the spring. (a) What is the speed of the box at the instant when it leaves the spring? (b) What is the maximum speed of the box during its motion?arrow_forwardA block of mass m=3.53 kg is attached to a spring, which is resting on a horizontal frictionless table. The block is pushed into the spring, compressing it by 5.00 cm, and is then released from rest. The spring begins to push the block back toward the equilibrium position at x=0 cm. The graph shows the component of the force (in Newtons) exerted by the spring on the block versus the position of the block (in centimeters) relative to equilibrium. Use the graph to answer the questions. How much work is done by the spring in pushing the block from its initial position at x=−5.00 cm to x=2.20cm?arrow_forwardan air-track glider of mass 0.100 kg is attached to the end of a horizontal air track by a spring with force constant 20.0 N/m. Initially the spring is unstretched and the glider is moving at 1.50 m/s to the right. Find the maximum distance d that the glider moves to the right if the air is turned off, so that there is kinetic friction with coefficient muk=0.47arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning