(a)
Interpretation:
Concept introduction:
The cation is an ionic species with a positive charge. It has more protons as compared to electrons so the net charge on the cations is positive. Its
The anion is an ionic species with a negative charge. It has more electrons than protons so the net charge on the anions is negative. Its symbol is the element with a superscript of the negative charge.
In general, cations are smaller than anions because the number of shells decreases after the loss of electrons in case of cations.
In the case of isoelectronic species, the size of cations decreases with an increase in positive charge and size of anion increases with an increase in a negative charge.
(b)
Interpretation:
Concept introduction:
The cation is an ionic species with a positive charge. It has more protons as compared to electrons so the net charge on the cations is positive. Its symbol is the element with a superscript of the positive charge.
The anion is an ionic species with a negative charge. It has more electrons than protons so the net charge on the anions is negative. Its symbol is the element with a superscript of the negative charge.
In general, cations are smaller than anions because the number of shells decreases after the loss of electrons in case of cations.
In the case of isoelectronic species, the size of cations decreases with an increase in positive charge and size of anion increases with an increase in a negative charge.
(c)
Interpretation:
Concept introduction:
The cation is an ionic species with a positive charge. It has more protons as compared to electrons so the net charge on the cations is positive. Its symbol is the element with a superscript of the positive charge.
The anion is an ionic species with a negative charge. It has more electrons than protons so the net charge on the anions is negative. Its symbol is the element with a superscript of the negative charge.
In general, cations are smaller than anions because the number of shells decreases after the loss of electrons in case of cations.
In the case of isoelectronic species, the size of cations decreases with an increase in positive charge and size of anion increases with an increase in a negative charge.
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Label the spectrum with spectroscopyarrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? enantiomers H Br H Br (S) CH3 H3C (S) (R) CH3 H3C H Br A Br H C H Br H3C (R) B (R)CH3 H Br H Br H3C (R) (S) CH3 Br H D identicalarrow_forwardLabel the spectrumarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY