EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8.4, Problem 5E
Interpretation Introduction

Interpretation:

To show that the average equation for the system is r' = -12(kr + Fsinϕ),  ϕ' = - 18(4a - 3br24Frcosϕ) where x = r cos(t + ϕ), x˙ = -r sin(t + ϕ), and the prime denotes differentiation with respect to slow time T = εt as usual.

Concept Introduction:

  • ➢ Use average or slow time equation for the weekly nonlinear oscillator.

  • ➢ Determine r'  and  ϕ from the slow time equation.

Expert Solution & Answer
Check Mark

Answer to Problem 5E

Solution:

It is shown that the average equations for the system are

r' = -12(kr + Fsinϕ),  ϕ' = - 18(4a - 3br24Frcosϕ).

Explanation of Solution

The general equation of the weekly nonlinear oscillator is

x¨ + x + εh(x, x˙) = 0

The average or slow time equation is

r' =hsinθ =  12π02πh(θ)sinθ dθ

rϕ' =h cos θ =  12π02πh(θ) cos θ dθ

The equation for the forced Duffing oscillator in the limit where the forcing, detuning, damping is done all week is as below,

x¨ + x + ε(bx3+kx˙ - ax - Fcos t) = 0

Comparing the above equation with the general equation of the weekly nonlinear oscillator and

h(x, x˙) = (bx3+kx˙ - ax - Fcos t)

By substituting (θ - ϕ) for t

h(x, x˙) = (bx3+kx˙ - ax - Fcos (θ-ϕ))

Consider

x = r cosθ

By differentiating the above equation

x˙ = - r sin θ

h(x, x˙) = (b(rcosθ)3+k(- rsinθ) - a(rcosθ) - Fcos (θ-ϕ))

h(x, x˙) = b(rcosθ)3-krsinθ- arcosθ - Fcos (θ-ϕ)

The average or slow time equation is

r' =hsinθ =  12π02πh(θ)sinθ dθ

r' =h(x, x˙)sinθ =  12π02πh(x, x˙) sinθ dθ

r' =  12π02π(b(rcosθ)3-krsinθ- arcosθ - Fcos (θ-ϕ) sin θ dθ

r' = 12π02π(br3sin(θ)cos3(θ)- krsin2(θ)- ar sin(θ)cos(θ) - Fsin(θ)cos (θ-ϕ)

Using the identity cos (θ-ϕ) = cos (θ)cos (ϕ)+sin (θ)sin (ϕ)

r' = 12π02π{br3sin(θ)cos3(θ)- krsin2(θ)- ar sin(θ)cos(θ) - Fsin(θ)cos (θ)cos (ϕ)-Fsin2(θ)sin (ϕ)}

r' = 10br3sin(θ)cos3(θ)0krsin2(θ)                        -0ar sin(θ)cos(θ) dθ0 Fsin(θ)cos (θ)cos (ϕ) dθ0Fsin2(θ)sin (ϕ)dθ

By solving it,

r' =  -12(kr + Fsinϕ)

Similarly,

rϕ' =hcos θ =  12π02πh(θ) cos θ dθ

rϕ' =h(x, x˙) cos θ =  12π02πh(x, x˙) cos θ dθ

rϕ' =h(x, x˙) cos θ =  12π02π(bx3+kx˙ - ax - Fcos (θ-ϕ))cos θ dθ

By substituting x = r cosθ and x˙ = - r sin θ,

rϕ' =  12π02π(b(r cosθ)3+k(- r sin θ) - a(r cosθ) - Fcos (θ-ϕ))cos θ dθ

rϕ' =  12π02π(br3cos4(θ)-krsin (θ)cos(θ) - arcos2(θ) - Fcos2(θ)cos (ϕ)-Fcos(θ)sin (θ)sin (ϕ)) dθ

rϕ' =  12π{02π(br3cos4(θ)) dθ02π(krsin (θ)cos(θ) ) dθ02π(arcos2(θ) ) dθ               -02π( Fcos2(θ)cos (ϕ)) dθ02π(Fcos(θ)sin (θ)sin (ϕ)) dθ}

By solving it,

rϕ' = 38br312ar12Fcos(ϕ)

ϕ' = 38br212a12rFcos(ϕ)

 ϕ' = - 18(4a - 3br24Frcosϕ)

Conclusion

It is seen that the average equations for the system are

r' = -12(kr + Fsinϕ),  ϕ' = - 18(4a - 3br24Frcosϕ).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate and simplify the Wronskian of the following two functions: y₁ (t) = 3t+3, y2(t) = 1² + 1 Based on the value of the Wronskian, are y₁ and y2 linearly dependent or linearly independent?
The maximum point of the function f(x, y) = x + 3y + 1 subject to the constraint x + y = 0, is: %3D Select one: O None of them O (1,–1) О (1, 1) O (-1, 1) о (-1,-1)
1 2) Find the linearization at x = a and use it to approximate f(b). f(x) а 3 6 b- 6.1 V4x+1 f(x) = f(a) + f'(a)(x – a)
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY