EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8.2, Problem 11E
Interpretation Introduction

Interpretation:

For the given system equation x¨ + μx˙ + x - x3= 0 , show that the origin changes from a stable to an unstable spiral as μ decreases to zero. Plot the phase portraits for μ>0, μ=0, and μ<0, and show that the bifurcation at μ=0 is a degenerative version of the bifurcation.

Concept Introduction:

Determine the fixed point for the given system.

Determine the bifurcation using the Jacobian matrix and fixed point.

Sketch phase portrait using system equation.

Blurred answer
Students have asked these similar questions
Please solve number 2.
Construct a know-show table of the proposition: For each integer n, n is even if and only if 4 divides n^2
In Problems 1 and 2 find the eigenfunctions and the equation that defines the eigenvalues for the given boundary-value problem. Use a CAS to approximate the first four eigenvalues A1, A2, A3, and A4. Give the eigenfunctions corresponding to these approximations. 1. y" + Ay = 0, y'(0) = 0, y(1) + y'(1) = 0
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY