EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 8.1, Problem 15E
Interpretation Introduction

Interpretation:

To interpret and justify the form of various terms in the equations n˙A = (p + nA)nAB - nAnB, n˙B = nBnAB - (p + nA)nB, where nAB = 1 - (p + nA) - nB. If nB(0) = 1 - p, and nA(0) = nAB(0) = 0, to numerically integrate the system until it reaches equilibrium. To show that the final state changes discontinuously as a function of p. To show analytically that pc = 1 - 320.134. To find the type of bifurcation occurs at pc.

Concept Introduction:

  • Fixed points occur where n˙A = 0, and n˙B = 0.

  • Linearization

    A = (n˙AnAn˙BnAn˙AnBn˙BnB)

  • The Eigenvalue λ can be calculated using the characteristic equation

    |(A - λI)| = 0

Blurred answer
Students have asked these similar questions
Problem 9: The 30-kg pipe is supported at A by a system of five cords. Determine the force in each cord for equilibrium. B 60º A E H
d((x, y), (z, w)) = |xz|+|yw|, show that whether d is a metric on R² or not?. Q3/Let R be a set of real number and d: R² x R² → R such that -> d((x, y), (z, w)) = max{\x - zl, ly - w} show that whether d is a metric on R² or not?. Q4/Let X be a nonempty set and d₁, d₂: XXR are metrics on X let d3,d4, d5: XX → R such that d3(x, y) = 4d2(x, y) d4(x, y) = 3d₁(x, y) +2d2(x, y) d5(x,y) = 2d₁ (x,y))/ 1+ 2d₂(x, y). Show that whether d3, d4 and d5 are metric on X or not?
Ju at © Ju 370 = x (- пье zxp = c² (2² 4 ) dx² ахе 2 nze dyz t nzp Q/what type of partial differential equation (PDE) are the following-
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Algebra
    Algebra
    ISBN:9781337282291
    Author:Ron Larson
    Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY