Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780429972195
Author: Steven H. Strogatz
Publisher: Taylor & Francis
bartleby

Videos

Question
Book Icon
Chapter 8.2, Problem 6E
Interpretation Introduction

Interpretation:

For the system, bifurcation occurs at the origin when μ = 0. The phase portrait is to be plotted and the bifurcation is subcritical or supercritical is to be determined.

Concept Introduction:

Suppose we have a physical system that settles down to equilibrium through exponentially damped oscillations. Now suppose that the decay rate depends on a control parameter μ. If the decay becomes slower and slower, and finally changes to growth at a critical value μc, the equilibrium state will lose stability. Then we say that the system has undergone a supercritical Hopf bifurcation.

A subcritical Hopf bifurcation occurs at μ = 0, where the unstable cycle shrinks to zero amplitude and engulfs the origin, rendering it unstable. For μ >0, the large-amplitude limit cycle is suddenly the only attractor in town. Solution that used to remain near the origin is now forced to grow into large-amplitude oscillation.

Blurred answer
Students have asked these similar questions
1. A Blue Whale's resting heart rate has period that happens to be approximately equal to 2π. A typical ECG of a whale's heartbeat over one period may be approximated by the function, f(x) = 0.005x4 2 0.005x³-0.364x² + 1.27x on the interval [0, 27]. Find an nth-order Fourier approximation to the Blue Whale's heartbeat, where n ≥ 3 is different from that used in any other posts on this topic, to generate a periodic function that can be used to model its heartbeat, and graph your result. Be sure to include your chosen value of n in your Subject Heading.
7. The demand for a product, in dollars, is p = D(x) = 1000 -0.5 -0.0002x² 1 Find the consumer surplus when the sales level is 200. [Hints: Let pm be the market price when xm units of product are sold. Then the consumer surplus can be calculated by foam (D(x) — pm) dx]
4. Find the general solution and the definite solution for the following differential equations: (a) +10y=15, y(0) = 0; (b) 2 + 4y = 6, y(0) =
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY