
Concept explainers
The resistance of loop 2 is greater than that loop l. (The loop are made from different materials.)
1. Is there a current induced through the wire of either of the loops:
• before the switch is closed? Explain.
• just after the switch is closed? Explain.
• a long after the switch is closed? Explain.
2. For the period of time that there is a current included through the wire of the loops, find the direction of the current.
3. The ratio of the induced currents for the two loops is found by experiment to be equal to the inverse of the ratio of the resistances of the loops.
What does this observation imply about the ratio of the induced emf in loop 1 to the induced emf in loop 2?
(1)

To Identify:
Induced current through wire of the loops as per the given conditions:
- Before the switch is closed.
- After when the switch is closed.
- After a long-time when the switch is closed.
Explanation of Solution
Introduction:
According to Faradays’ law, an e.m.f is induced in a loop of wire if there is a rate of change in flux passing through the wire.
Where,
Case1: Before the switch is closed:
Before the switch is closed, there is no current flowing in solenoid (bigger loop) that can produce changing magnetic field. Hence, there is no change in flux in the small loops. Therefore, there is no induced current in small coils.
Case 2: After the switch gets closed:
Just after the switch is closed, the current in the solenoid (bigger loop) goes from zero to maximum which makes the magnetic field lines passing through the small loops change. Hence, due to change in flux, there will be induced current in them. The loop with higher resistance will be associated with less induced current.
Case 3: After longtimewhen the switch isclosed:
After long time the switch is closed, there is constant current in solenoid (bigger loop) that produces constant magnetic field. Hence, there is no change in flux in the small loops. Therefore, there is no current in small loops.
Conclusion:
Therefore, following Faraday’s law, there is an induced current in small coils just when switch is closed and is zero for other cases.
(2)

To Find
The direction current induced through a wire of the loops.
Explanation of Solution
Introduction:
According to Lenz’s law, the induced emf will form a magnetic field which counteracts the change in flux.
By seeing the sign of the battery (current flows from positive to negative terminal) and using the right-hand rule, the direction of magnetic field induced in the greater loop must be from left to right. When switch is closed, then the induced current in small loop is in such a way that decreases the magnetic flux produced by the larger loop, hence, the induced current is in clockwise while seeing the loop from right. When switch is opened, the induced current will flow in anticlockwise direction.
Conclusion:
Therefore, the current induced through a wire of the loop will be such that it will oppose the change in flux produced by the bigger loop.
(3)

To Explain:
The ratio of induced emf in the loop 1to the loop 2.
Answer to Problem 1aT
Ratio of emf induced in loop 1to loop 2 is equal.
Explanation of Solution
Introduction:
According to Faradays’ law, an e.m.f is induced in a loop of wire if there is a rate of change in flux passing through the wire.
Where,
The induced emf depends on the rate of change in flux. Considering the area of the small loops same, the change in magnetic flux will be same for both the loops. Therefore, the induced emf will be same.
The induced current will be different in both the loops though, as the resistance of the loop 2 is greater than the loop 1.
Conclusion:
Therefore, induced emf will be same in both smaller loops.
Want to see more full solutions like this?
Chapter 8 Solutions
Tutorials in Introductory Physics
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
Chemistry: Structure and Properties (2nd Edition)
Human Anatomy & Physiology (2nd Edition)
Cosmic Perspective Fundamentals
Biology: Life on Earth (11th Edition)
- Consider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- A particle in a box between x=0 and x=6 has the wavefunction Psi(x)=A sin(2πx). How muchenergy is required for the electron to make a transition to Psi(x)= A’ sin(7π x/3). Draw anapproximate graph for the wavefunction. Find A and A'arrow_forwardA proton is moving with 10^8 m/s speed. Find the De Broglie wavelength associated with theproton and the frequency of that wave.arrow_forwardFind the wavelength of the photon if a (Li--) electron makes a transition from n=4 to n=3. Findthe Bohr radius for each state.arrow_forward
- A photon with wavelength 3000 nm hits a stationary electron. After the collision electron isscattered to 60 degrees. Find the wavelength and frequency of the scattered photon.arrow_forwardA metal has threshold frequency 10^15. Calculate the maximum kinetic energy of the ejectedelectron if a laser beam with wavelength 1.5 10^-7 m is projected on the metal.arrow_forwardDetermine the direction of the vector V, B, or ♬ that is missing from the pair of vectors shown in each scenario. Here, u is the velocity vector of a moving positive charge, B is a constant and uniform magnetic field, and F is the resulting force on the moving charge. 1. 2. 3. B OB F 4. ↑F F 5. 怔 ↑ ↑F Answer Bank 6. ↑ TE Farrow_forward
- Two point charges (+9.80 nC and -9.80 nC) are located 8.00 cm apart. Let U=0 when all of the charges are separated by infinite distances. What is the potential energy if a third point charge q=-4.20 nC is placed at point b? 8.00 cm 8.00 cm 4.00 +4.00 +4.00- cm cm cm HJarrow_forward! Required information Two chloride ions and two sodium ions are in water, the "effective charge" on the chloride ions (CI¯) is −2.00 × 10-21 C and that of the sodium ions (Na+) is +2.00 x 10-21 C. (The effective charge is a way to account for the partial shielding due to nearby water molecules.) Assume that all four ions are coplanar. CT Na+ Na+ 30.0° 45.0% с сг L. where a = 0.300 nm, b = 0.710 nm, and c = 0.620 nm. What is the direction of electric force on the chloride ion in the lower right-hand corner in the diagram? Enter the angle in degrees where positive indicates above the negative x-axis and negative indicates below the positive x-axis.arrow_forwardA pendulum has a 0.4-m-long cord and is given a tangential velocity of 0.2 m/s toward the vertical from a position 0 = 0.3 rad. Part A Determine the equation which describes the angular motion. Express your answer in terms of the variable t. Express coefficients in radians to three significant figures. ΜΕ ΑΣΦ vec (t)=0.3 cos (4.95t) + 0.101 sin (4.95t) Submit Previous Answers Request Answer × Incorrect; Try Again; 6 attempts remainingarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





