Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8.1, Problem 2bT

To understand the interaction between the wire loops and solenoids in section I. we can use the idea that a force is exerted on a charged particle moving in a magnetic field. In each of those cases there was an induced current when there was relative motion between the solenoid and the wire loop. In other situations such as the one above, however, there is an induced current in the wire loop even though there is no relative motion between the wire loop and the solenoid. There is a general rule called Lenz’ law that we can use in all cases to predict the direction of the induced current

B. Discuss the statement of Lenz’ law in your textbook with your partners. Make sure you understand how it is related to the statement by the student with whom you agreed in part D of section I.

Blurred answer
Students have asked these similar questions
Two parallel conducting rails a distance l apart are connected at one end by a resistance R in series with battery of emf E. A conducting bar completes the circuit, joining the two rails electrically but free to slide along them. The whole circuit is perpendicular to a uniform magnetic field B, as shown in (Figure 1). The bar is initially at rest, and nothing is pulling it.
A rectangular wire loop of height h, width w, and net electrical resistance R lies in the x-y plane. As shown in the figure below, the entire region x < 0 of space is occupied by a constant, uniform magnetic field which points in the –z direction (into the page). In order to determine the magnitude of this field, a student pulls the wire loop out of the magnetic field region at a constant velocity v in the +x-direction, and measures the current I induced in the loop during this process. I = 17 μAR = 35 ohmsh = 3 cm w = 8 cmv = 2 cm/sec a) What is the direction of the current induced in the wire loop? b)What is the magnitude B of the magnetic field?
Problem 1: A rectangular wire loop located in the plane of the page has a width L, and its length, x, is determined by the position a movable rail that forms the fourth side of the rectangle, as shown. The total electrical resistance of the wire loop is R, and an externally applied magnetic field, B, is directed out of the page. The rail is moving towards the right with speed v. Assume that the x direction is towards the right of the page, the y direction is towards the top of the page, and the z direction is out of the page. P = X . . V. . B Part (g) Considering the current calculated in a previous step, calculate the power dissipated through the resistor. Part (h) Which statement best describes the flow of energy through the system? O Energy stored in the external magnetic field is converted to mechanical work which keeps the rail moving at a constant speed. Energy stored in the external magnetic field is converted to thermal energy dissipated through the resistor. The mechanical…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY