
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.1, Problem 7CP
To determine
To find: The smallest C for which the given population on the patch [0, 10] survives in the long run, Use the Crank-Nicolson method to approximate the solution, and try to confirm that your result do not depend on the step size choice. And to compare the result with the survival rule y13y
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Question 1. Prove that the function f(x) = 2; f: (2,3] → R, is not uniformly
continuous on (2,3].
Calculus III
May I please have the example, definition semicolons, and all blanks completed and solved?
Thank you so much,
A company estimates that the revenue (in dollars) from the sale of x doghouses
is given by R(x) = 12,000 In (0.02x+1). Use the differential to approximate the
change in revenue from the sale of one more doghouse if 80 doghouses have
already been sold.
The revenue will increase by $ if one more doghouse is made.
(Round to the nearest cent as needed.)
Chapter 8 Solutions
Numerical Analysis
Ch. 8.1 - Prove that the functions (a) u(x,t)=e2t+x+e2tx,...Ch. 8.1 - Prove that the functions (a) u(x,t)=etsinx, (b)...Ch. 8.1 - Prove that if f(x) is a degree 3 polynomial, then...Ch. 8.1 - Prob. 4ECh. 8.1 - Verify the eigenvector equation (8.13).Ch. 8.1 - Show that the nonzero vectors vj in (8.12 ), for...Ch. 8.1 - Prob. 1CPCh. 8.1 - Consider the equation ut=uxx for 0x1, 0t1 with the...Ch. 8.1 - Prob. 3CPCh. 8.1 - Use the Backward Difference Method to solve the...
Ch. 8.1 - Use the Crank-Nicolson Method to solve the...Ch. 8.1 - Prob. 6CPCh. 8.1 - Prob. 7CPCh. 8.1 - Setting C=D=1 in the population model (8.26), use...Ch. 8.2 - Prove that the functions (a) u(x,t)=sinxcos4t, (b)...Ch. 8.2 - Prove that the functions (a) u(x,t)=sinxsin2t, (b)...Ch. 8.2 - Prove that u1(x,t)=sinxcosct and u2(x,t)=ex+ct are...Ch. 8.2 - Prove that if s(X) is twice differentiable, then...Ch. 8.2 - Prove that the eigenvalues of A in (8.33) lie...Ch. 8.2 - Let be a complex number. (a) Prove that if +1/ is...Ch. 8.2 - Solve the initial-boundary value problems in...Ch. 8.2 - Solve the initial-boundary value problems in...Ch. 8.2 - Prob. 3CPCh. 8.2 - Prob. 4CPCh. 8.3 - Show that u(x,y)=ln(x2+y2) is a solution to the...Ch. 8.3 - Prob. 2ECh. 8.3 - Prove that the functions (a) u(x,y)=eysinx, (b)...Ch. 8.3 - Prove that the functions (a) u(x,y)=exy, (b)...Ch. 8.3 - Prove that the functions (a) u(x,y)=sin2xy, (b)...Ch. 8.3 - Prove that the functions (a) u(x,y)=ex+2y, (b)...Ch. 8.3 - Prob. 7ECh. 8.3 - Show that the barycenter of a triangle with...Ch. 8.3 - Prove Lemma 8.9 .Ch. 8.3 - Prove Lemma 8.10.Ch. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Solve the Laplace equation problems in Exercise 3...Ch. 8.3 - Prob. 2CPCh. 8.3 - Prob. 3CPCh. 8.3 - Prob. 4CPCh. 8.3 - Prob. 5CPCh. 8.3 - The steady-state temperature u on a heated copper...Ch. 8.3 - Prob. 7CPCh. 8.3 - Prob. 8CPCh. 8.3 - Solve the Laplace equation problems in Exercise 3...Ch. 8.3 - Solve the Poisson equation problems in Exercise 4...Ch. 8.3 - Solve the elliptic partial differential equations...Ch. 8.3 - Prob. 12CPCh. 8.3 - Prob. 13CPCh. 8.3 - Solve the elliptic partial differential equations...Ch. 8.3 - Prob. 15CPCh. 8.3 - Prob. 16CPCh. 8.3 - For the elliptic equations in Exercise 7, make a...Ch. 8.3 - Solve the Laplace equation with Dirichlet boundary...Ch. 8.4 - Show that for any constant c, the function...Ch. 8.4 - Show that over an interval [ x1,xr ] not...Ch. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 1CPCh. 8.4 - Prob. 2CPCh. 8.4 - Solve Fishers equation (8.69) with...Ch. 8.4 - Prob. 4CPCh. 8.4 - Solve the Brusselator equations for...Ch. 8.4 - Prob. 6CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- The population of bacteria (in millions) in a certain culture x hours after an experimental 20x nutrient is introduced into the culture is P(x) = - 2 Use the differential to approximate the changes in population for the following changes in x. 8+x a. 1 to 1.5 b. 3 to 3.25 a. Use the differential to approximate the change in population for x=1 to 1.5. Between 1 and 1.5 hours, the population of bacteria changes by million. (Round to three decimal places as needed.)arrow_forwardThe demand for grass seed (in thousands of pounds) at price p dollars is given by the following function. D(p) 3p³-2p² + 1460 Use the differential to approximate the changes in demand for the following changes in p. a. $4 to $4.11 b. $6 to $6.19arrow_forwardLet the region R be the area enclosed by the function f(x) = 3 ln (x) and g(x) = 3 x + 1. Write an integral in terms of x and also an integral in terms of y that would represent the area of the region R. If necessary, round limit values to the nearest thousandth. Answer Attempt 1 out of 2 y 7 10 6 5 4 3 2 -1 2 3 4 5 6 x2 dx x1 = x2 = x1 Y1 = Y2 = Y1 dyarrow_forward
- A manufacturer of handcrafted wine racks has determined that the cost to produce x units per month is given by C = 0.3x² + 7,000. How fast is the cost per month changing when production is changing at the rate of 14 units per month and the production level is 80 units? Costs are increasing at the rate of $ (Round to the nearest dollar as needed.) per month at this production level.arrow_forwarddy Assume x and y are functions of t. Evaluate for 2xy -3x+2y³ = - 72, with the conditions dt dx dt = -8, x=2, y = -3. dy dt (Type an exact answer in simplified form.)arrow_forwardDiscuss and explain in the picturearrow_forward
- Consider the cones K = = {(x1, x2, x3) | € R³ : X3 ≥√√√2x² + 3x² M = = {(21,22,23) (x1, x2, x3) Є R³: x3 > + 2 3 Prove that M = K*. Hint: Adapt the proof from the lecture notes for finding the dual of the Lorentz cone. Alternatively, prove the formula (AL)* = (AT)-¹L*, for any cone LC R³ and any 3 × 3 nonsingular matrix A with real entries, where AL = {Ax = R³ : x € L}, and apply it to the 3-dimensional Lorentz cone with an appropriately chosen matrix A.arrow_forwardI am unable to solve part b.arrow_forwardConsider the sequence below: 1 1 1 (a) Express this sequence as a recurrence relation (b) Express this sequence in the form {a}=1 (c) Does this sequence converge or diverge? Justify your answer. Consider the sequence below: 1 1 1 1, 4' 9' 16' (a) Express this sequence in the form {ak}=1 (b) Does this sequence converge or diverge? Justify your answer. Consider the sequence below: 345 2. 4' 9' 16' ·} (a) Express this sequence in the form {a}1 (b) Does this sequence converge or diverge? Justify your answer.arrow_forward
- Let M = M₁U M₂ UM3 and K M₁ = {(x1, x2) ER²: 2 ≤ x ≤ 8, 2≤ x ≤8}, M₂ = {(x1, x2)™ € R² : 4 ≤ x₁ ≤ 6, 0 ≤ x2 ≤ 10}, M3 = {(x1, x2) Є R²: 0 ≤ x₁ ≤ 10, 4≤ x ≤ 6}, ¯ = cone {(1, 2), (1,3)†} ≤ R². (a) Determine the set E(M,K) of efficient points of M with respect to K. (b) Determine the set P(M, K) of properly efficient points of M with respect to K.arrow_forward5.17 An aluminum curtain wall panel 12 feet high is attached to large concrete columns (top and bottom) when the temperature is 65°F. No provision is made for differen- tial thermal movement vertically. Because of insulation between them, the sun heats up the wall panel to 120°F but the column to only 80°F. Determine the consequent compressive stress in the curtain wall. CONCRETE COLUMNS CONNECTIONS Stress= ALUMINUM WALL PANEL 12'-0"arrow_forwardUse the growth rate of sequences theorem to find the limit or state it divergesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License