Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259676512
Author: Kenneth H Rosen
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.1, Problem 11E
a) Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.
b) What are the initial conditions?
c) In how many ways can this person climb a flight of eight stairs?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote
Already got wrong chatgpt answer
.
In a town with 5000 adults, a sample of 50 is selected using SRSWOR and asked their opinion of a proposed municipal project; 30 are found to favor it and 20 oppose it. If, in fact, the adults of the town were equally divided on the proposal, what would be the probability of observing what has been observed? Approximate using the Binomial distribution. Compare this with the exact probability which is 0.0418.
1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set
Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k
components, where k is the greatest common divisor of {n, r,s}.
Chapter 8 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 8.1 - Use mathematical induction to verify the formula...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - A vending machine dispensing books of stamps...Ch. 8.1 - A country uses as currency coins with values of 1...Ch. 8.1 - How many was are there to pay a bill of 17 pesos...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...
Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - Messages are transmitted over a communications...Ch. 8.1 - A bus driver pays all tolls, using only nickels...Ch. 8.1 - a) Find the recurrence relation satisfied by Rn,...Ch. 8.1 - a) Find the recurrence relation satisfied by Rn,...Ch. 8.1 - a) Find the recurrence relation satisfied by Sn,...Ch. 8.1 - Find a recurrence relation for the number of bit...Ch. 8.1 - How many bit sequences of length seven contain an...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - Show that the Fibonacci numbers satisfy the...Ch. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - a) Use the recurrence relation developed in...Ch. 8.1 - In the Tower of Hanoi puzzle, suppose our goal is...Ch. 8.1 - Exercises 33-37 deal with a variation of the...Ch. 8.1 - Exercises 33-37 deal with a variation of the...Ch. 8.1 - Prob. 35ECh. 8.1 - Exercises 33-37 deal with a variation of the...Ch. 8.1 - Prob. 37ECh. 8.1 - Prob. 38ECh. 8.1 - Show that the Reve’s puzzle with four disks can be...Ch. 8.1 - Prob. 40ECh. 8.1 - Show that if R(n) is the number of moves used by...Ch. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - Show that an2=an2an+2an .Ch. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Construct the algorithm described in the text...Ch. 8.1 - Use Algorithm 1 to determine the maximum number of...Ch. 8.1 - For each part of Exercise 54, use your algorithm...Ch. 8.1 - In this exercise we will develop a dynamic...Ch. 8.1 - Dynamic programming can be used to develop an...Ch. 8.2 - Determine which of these are linear homogeneous...Ch. 8.2 - Determine which of these are linear homogeneous...Ch. 8.2 - Solve these recurrence relations together with the...Ch. 8.2 - Solve these recurrence relations together with the...Ch. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - A model for the number of lobsters caught per year...Ch. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - The Lucas numbers satisfy the recurrence relation...Ch. 8.2 - Find the solution to an=2an1+an2+2an3 for n = 3,4,...Ch. 8.2 - Find the solution to an=7an2+6an3 with a0=9,a1=10...Ch. 8.2 - Find the solution to an=5an24an4 with...Ch. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prove this identity relating the Fibonacci numbers...Ch. 8.2 - Solve the recurrence relation an=6an112an2+8an3...Ch. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - What is the general form of the solutions of a...Ch. 8.2 - Consider the nonhomogeneous linear recurrence...Ch. 8.2 - Consider the nonhomogeneous linear recurrence...Ch. 8.2 - a) Determine values of the constants A and B such...Ch. 8.2 - What is the general form of the particular...Ch. 8.2 - What is the general form of the particular...Ch. 8.2 - a) Find all solutions of the recurrence relation...Ch. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Find all solutions of the recurrence relation...Ch. 8.2 - Find the solution of the recurrence relation...Ch. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Find the solution of the recurrence relation...Ch. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Prob. 39ECh. 8.2 - Solve the simultaneous recurrence relations...Ch. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - Suppose that there are two goats on an island...Ch. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Use Exercise 48 to solve the recurrence relation...Ch. 8.2 - It can be shown that Cn, the average number of...Ch. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.3 - How many comparisons are needed for a binary...Ch. 8.3 - Prob. 2ECh. 8.3 - Multiply (1110)2 and (1010)2 using the fast...Ch. 8.3 - Express the fast multiplication algorithm in...Ch. 8.3 - Determine a value for the constant C in Example...Ch. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Suppose that f(n)=2f(n/2)+3 when is an even...Ch. 8.3 - Prob. 9ECh. 8.3 - Find f(n) when n=2k , where f satisfies the...Ch. 8.3 - Give a big-O estimate for the function f in...Ch. 8.3 - Find f(n) when n=3k , where f satisfies the...Ch. 8.3 - Give a big-O estimate for the function f in...Ch. 8.3 - Suppose that there are n=2k terms in an...Ch. 8.3 - How many rounds are in the elimination tournament...Ch. 8.3 - Prob. 16ECh. 8.3 - Suppose that the votes of n people for different...Ch. 8.3 - Suppose that each person in a group of n people...Ch. 8.3 - a) Set up a divide-and-conquer recurrence relation...Ch. 8.3 - a) Set up a divide-and-conquer recurrence relation...Ch. 8.3 - Suppose that the function f satisfies the...Ch. 8.3 - Suppose that the function f satisfies the...Ch. 8.3 - This exercise deals with the problem of finding...Ch. 8.3 - Apply the algorithm described in Example 12 for...Ch. 8.3 - Apply the algorithm described in Example 12 for...Ch. 8.3 - Use pseudocode to describe the recursive algorithm...Ch. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - Prob. 30ECh. 8.3 - Prob. 31ECh. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.4 - Find the generating function for the finite...Ch. 8.4 - Find the generating function for the finite...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - Prob. 5ECh. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - Find the coefficient of x10in the power series of...Ch. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Use generating functions to determine the number...Ch. 8.4 - Use generating functions to determine the number...Ch. 8.4 - Use generating functions to determine the number...Ch. 8.4 - Use generating functions to find the number of...Ch. 8.4 - In how many ways can 25 identical donuts be...Ch. 8.4 - Use generating functions to find the number of...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Explain how generating functions can be used to...Ch. 8.4 - Explain how generating functions can be used to...Ch. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Use generating functions (and a computer algebra...Ch. 8.4 - Use generating functions (and a computer algebra...Ch. 8.4 - Prob. 31ECh. 8.4 - If G(x) is the generating function for the...Ch. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Use generating functions to solve the recurrence...Ch. 8.4 - Prob. 37ECh. 8.4 - Use generating functions to solve the recurrence...Ch. 8.4 - Use generating functions to solve the recurrence...Ch. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - (Calculus required) Let {Cn}be the sequence of...Ch. 8.4 - Use generating functions to prove Pascal’s...Ch. 8.4 - Use generating functions to prove Vandermonde’s...Ch. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Find the sequence with each of these functions as...Ch. 8.4 - Find the sequence with each of these functions as...Ch. 8.4 - A coding system encodes messages using strings of...Ch. 8.4 - A coding system encodes messages using strings of...Ch. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Suppose that X is a random variable on a sample...Ch. 8.4 - Prob. 60ECh. 8.4 - Prob. 61ECh. 8.4 - Show that if X and Y are independent random...Ch. 8.5 - How many elements are in A1A2 if there are 12...Ch. 8.5 - There are 345 students at a college who have taken...Ch. 8.5 - A survey of households in the United States...Ch. 8.5 - A marketing report concerning personal computers...Ch. 8.5 - Find the number of elements A1A2A3 if there are...Ch. 8.5 - Prob. 6ECh. 8.5 - There are 2504 computer science students at a...Ch. 8.5 - In a survey of 270 college students, it is found...Ch. 8.5 - How many students are enrolled in a course either...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - How many swings of length eight do not contain six...Ch. 8.5 - How many permutations of the 26 letters of the...Ch. 8.5 - How many permutations of the 10 digits either...Ch. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - How many terms are there in the formula for the...Ch. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Let E1, E2 ,and E3 be three events from a sample...Ch. 8.5 - Prob. 26ECh. 8.5 - Find the probability that when four numbers from 1...Ch. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.5 - Prob. 31ECh. 8.6 - Suppose that in a bushel of 100 apples there are...Ch. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - Prob. 4ECh. 8.6 - Find the number of primes less than 200 using the...Ch. 8.6 - Prob. 6ECh. 8.6 - How many positive integers less than 10,000 are...Ch. 8.6 - Prob. 8ECh. 8.6 - How many ways are there to distribute six...Ch. 8.6 - In how many ways can eight distinct balls be...Ch. 8.6 - In how many ways can seven different jobs be...Ch. 8.6 - List all the derangements of {1, 2,3, 4}.Ch. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - A machine that inserts letters into envelopes goes...Ch. 8.6 - A group of n students is assigned seats for each...Ch. 8.6 - Prob. 17ECh. 8.6 - Prob. 18ECh. 8.6 - Prob. 19ECh. 8.6 - Prob. 20ECh. 8.6 - For which positive integers n is Dn, the number of...Ch. 8.6 - Prob. 22ECh. 8.6 - Prob. 23ECh. 8.6 - Prob. 24ECh. 8.6 - Prob. 25ECh. 8.6 - How many derangements of {1, 2, 3, 4, 5, 6} end...Ch. 8.6 - Prove Theorem 1.Ch. 8 - a) What is a recurrence re1aon? b) Find a...Ch. 8 - Explain how the Fibonacci numbers are used to...Ch. 8 - a) Find a recurrence relation for the number of...Ch. 8 - Prob. 6RQCh. 8 - a) Explain how to solve linear homogeneous...Ch. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - a) Give a formula for the number of elements in...Ch. 8 - a) Give a formula for the number of elements in...Ch. 8 - Prob. 12RQCh. 8 - Explain how the principle of inclusion-exclusion...Ch. 8 - Prob. 14RQCh. 8 - Prob. 15RQCh. 8 - a) Define a derangement. b) Why is counting the...Ch. 8 - A group of 10 people begin a chain letter, with...Ch. 8 - A nuclear reactor has created 18 grams of a...Ch. 8 - Every hour the U.S. government prints 10,000 more...Ch. 8 - Suppose that every hour there are two new bacteria...Ch. 8 - Messages are sent over a communications channel...Ch. 8 - Prob. 6SECh. 8 - How many ways are there to form these postages...Ch. 8 - Prob. 8SECh. 8 - Solve the recurrence relation an=a2n1/bn2 if a0=1...Ch. 8 - Prob. 10SECh. 8 - Find the solution of the recurrence relation...Ch. 8 - Prob. 12SECh. 8 - Prob. 13SECh. 8 - Prob. 14SECh. 8 - Prob. 15SECh. 8 - In Exercises 15-18 we develop a dynamic...Ch. 8 - In Exercises 15-18 we develop a dynamic...Ch. 8 - In Exercises 15-18 we develop a dynamic...Ch. 8 - Find the solution to the recurrence relation...Ch. 8 - Find the solution to the recurrence relation...Ch. 8 - Give a big-O estimate for the size of f in...Ch. 8 - Find a recurrence relation that describes the...Ch. 8 - Prob. 23SECh. 8 - Prob. 24SECh. 8 - Prob. 25SECh. 8 - Find an where a) an=3 . b) an=4n+7 . c) an=n2+n+1Ch. 8 - Prob. 27SECh. 8 - Prob. 28SECh. 8 - Prob. 29SECh. 8 - Prob. 30SECh. 8 - Prob. 31SECh. 8 - Prob. 32SECh. 8 - Prob. 33SECh. 8 - Prob. 34SECh. 8 - Prob. 35SECh. 8 - How many terms are needed when the...Ch. 8 - How many solutions in positive integers are there...Ch. 8 - How many positive integers less than 1,000,000 are...Ch. 8 - How many positive integers less than 200 are a)...Ch. 8 - How many ways are there to assign six different...Ch. 8 - What is the probability that exactly one person is...Ch. 8 - How many bit stings of length six do not contain...Ch. 8 - What is the probability that a bit string of...Ch. 8 - Prob. 1CPCh. 8 - Prob. 2CPCh. 8 - Prob. 3CPCh. 8 - Prob. 4CPCh. 8 - Prob. 5CPCh. 8 - Prob. 6CPCh. 8 - Prob. 7CPCh. 8 - Prob. 8CPCh. 8 - Prob. 9CPCh. 8 - Prob. 10CPCh. 8 - Prob. 11CPCh. 8 - Prob. 12CPCh. 8 - Given a positive integer n, list all the...Ch. 8 - Prob. 1CAECh. 8 - Prob. 2CAECh. 8 - Find as many prime Fibonacci numbers as you can....Ch. 8 - Prob. 4CAECh. 8 - Prob. 5CAECh. 8 - Prob. 6CAECh. 8 - Prob. 7CAECh. 8 - Prob. 8CAECh. 8 - Prob. 9CAECh. 8 - List all the derangements of 1,2,3,4,5,6,7,8 .Ch. 8 - Prob. 11CAECh. 8 - Find the original source where Fibonacci presented...Ch. 8 - Explain how the Fibonacci numbers arise in a...Ch. 8 - Prob. 3WPCh. 8 - Discuss as mans different problems as possible...Ch. 8 - Prob. 5WPCh. 8 - Prob. 6WPCh. 8 - Prob. 7WPCh. 8 - Prob. 8WPCh. 8 - Describe the solution of Ulam’s problem (see...Ch. 8 - Discuss variations of Ulam’s problem (see Exercise...Ch. 8 - Prob. 11WPCh. 8 - Describe how sieve methods are used in number...Ch. 8 - Look up the rules of the old French card game of...Ch. 8 - Prob. 14WPCh. 8 - Describe the Polyá theory of counting and the kind...Ch. 8 - The problème des ménages (the problem of the...Ch. 8 - Explain how rook polynomials can be used to solve...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Question 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward16. Solve the given differential equation: y" + 4y sin (t)u(t 2π), - y(0) = 1, y'(0) = 0 Given, 1 (x² + 1)(x²+4) 1/3 -1/3 = + x²+1 x² +4 Send your answer in pen and paper don't r eputed ur self down Don't send the same previous answer that was Al generated Don't use any Al tool show ur answer in pe n and paper then takearrow_forwardR denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forward
- Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forward
- Question 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardGood explanation it sure experts solve itarrow_forwardBest explains it not need guidelines okkarrow_forward
- Task number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardActiv Determine compass error using amplitude (Sun). Minimum number of times that activity should be performed: 3 (1 each phase) Sample calculation (Amplitude- Sun): On 07th May 2006 at Sunset, a vessel in position 10°00'N 010°00'W observed the Sun bearing 288° by compass. Find the compass error. LMT Sunset: LIT: (+) 00d 07d 18h 00h 13m 40m UTC Sunset: 07d 18h 53m (added- since longitude is westerly) Declination (07d 18h): N 016° 55.5' d (0.7): (+) 00.6' Declination Sun: N 016° 56.1' Sin Amplitude = Sin Declination/Cos Latitude = Sin 016°56.1'/ Cos 10°00' = 0.295780189 Amplitude=W17.2N (The prefix of amplitude is named easterly if body is rising, and westerly if body is setting. The suffix is named same as declination) True Bearing=287.2° Compass Bearing= 288.0° Compass Error = 0.8° Westarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
What is a Relation? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=hV1_wvsdJCE;License: Standard YouTube License, CC-BY
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY